174 resultados para Rna-protein interaction
Resumo:
Rad is the prototypic member of a new class of Ras-related GTPases. Purification of the GTPase-activating protein (GAP) for Rad revealed nm23, a putative tumor metastasis suppressor and a development gene in Drosophila. Antibodies against nm23 depleted Rad-GAP activity from human skeletal muscle cytosol, and bacterially expressed nm23 reconstituted the activity. The GAP activity of nm23 was specific for Rad, was absent with the S105N putative dominant negative mutant of Rad, and was reduced with mutations of nm23. In the presence of ATP, GDP⋅Rad was also reconverted to GTP⋅Rad by the nucleoside diphosphate (NDP) kinase activity of nm23. Simultaneously, Rad regulated nm23 by enhancing its NDP kinase activity and decreasing its autophosphorylation. Melanoma cells transfected with wild-type Rad, but not the S105N-Rad, showed enhanced DNA synthesis in response to serum; this effect was lost with coexpression of nm23. Thus, the interaction of nm23 and Rad provides a potential novel mechanism for bidirectional, bimolecular regulation in which nm23 stimulates both GTP hydrolysis and GTP loading of Rad whereas Rad regulates activity of nm23. This interaction may play important roles in the effects of Rad on glucose metabolism and the effects of nm23 on tumor metastasis and developmental regulation.
Resumo:
In cells infected with HIV type 1 (HIV-1), the integrated viral promoter is present in a chromatin-bound conformation and is transcriptionally silent in the absence of stimulation. The HIV-1 Tat protein binds to a stem-loop structure at the 5′ end of viral mRNA and relieves this inhibition by inducing a remodeling of the nucleosome arrangement downstream of the transcription-initiation site. Here we show that Tat performs this activity by recruiting to the viral long terminal repeat (LTR) the transcriptional coactivator p300 and the closely related CREB-binding protein (CBP), having histone acetyltransferase (HAT) activity. Tat associates with HAT activity in human nuclear extracts and binds to p300 and CBP both in vitro and in vivo. Integrity of the basic domain of Tat is essential for this interaction. By a quantitative chromatin immunoprecipitation assay we show that the delivery of recombinant Tat induces the association of p300 and CBP with the chromosomally integrated LTR promoter. Expression of human p300 in both human and rodent cells increases the levels of Tat transactivation of the integrated LTR. These results reinforce the evidence that p300 and CBP have a pivotal function at both cellular and viral promoters and demonstrate that they also can be recruited by an RNA-targeted activator. Additionally, these findings have important implications for the understanding of the mechanisms of HIV-1 latency and reactivation.
Resumo:
Posttranslational modification of Rab proteins by geranylgeranyltransferase type II requires that they first bind to Rab escort protein (REP). Following prenylation, REP is postulated to accompany the modified GTPase to its specific target membrane. REP binds preferentially to Rab proteins that are in the GDP state, but the specific structural domains involved in this interaction have not been defined. In p21 Ras, the α2 helix of the Switch 2 domain undergoes a major conformational change upon GTP hydrolysis. Therefore, we hypothesized that the corresponding region in Rab1B might play a key role in the interaction with REP. Introduction of amino acid substitutions (I73N, Y78D, and A81D) into the putative α2 helix of Myc-tagged Rab1B prevented prenylation of the recombinant protein in cell-free assays, whereas mutations in the α3 and α4 helices did not. Additionally, upon transient expression in transfected HEK-293 cells, the Myc-Rab1B α2 helix mutants were not efficiently prenylated as determined by incorporation of [3H]mevalonate. Metabolic labeling studies using [32P]orthophosphate indicated that the poor prenylation of the Rab1B α2 helix mutants was not directly correlated with major disruptions in guanine nucleotide binding or intrinsic GTPase activity. Finally, gel filtration analysis of cytosolic fractions from 293 cells that were coexpressing T7 epitope-tagged REP with various Myc-Rab1B constructs revealed that mutations in the α2 helix of Rab1B prevented the association of nascent (i.e., nonprenylated) Rab1B with REP. These data indicate that the Switch 2 domain of Rab1B is a key structural determinant for REP interaction and that nucleotide-dependent conformational changes in this region are largely responsible for the selective interaction of REP with the GDP-bound form of the Rab substrate.
Resumo:
Association of mRNA with the cytoskeleton represents a fundamental aspect of RNA physiology likely involved in mRNA transport, anchoring, translation, and turnover. We report the initial characterization of a protein complex that binds RNA in a sequence-independent but size-dependent manner in vitro. The complex includes a ∼160-kDa protein that is bound directly to mRNA and that appears to be either identical or highly related to a ∼1600-kDa protein that binds directly to mRNA in vivo. In addition, the microtubule-associated protein, MAP 1A, a cytoskeletal associated protein is a component of this complex. We suggest that the general attachment of mRNA to the cytoskeleton may be mediated, in part, through the formation of this ribonucleoprotein complex.
Resumo:
The sterol regulatory element–binding protein-2 (SREBP-2) is produced as a large precursor molecule attached to the endoplasmic reticulum membrane. In response to the sterol depletion, the N-terminal segment of the precursor, which contains a basic helix-loop-helix–leucine zipper domain, is released by two sequential cleavages and is translocated to the nucleus, where it activates the transcription of target genes. The data herein show that released SREBP-2 uses a distinct nuclear transport pathway, which is mediated by importin β. The mature form of SREBP-2 is actively transported into the nucleus when injected into the cell cytoplasm. SREBP-2 binds directly to importin β in the absence of importin α. Ran-GTP but not Ran-GDP causes the dissociation of the SREBP-2–importin β complex. G19VRan-GTP inhibits the nuclear import of SREBP-2 in living cells. In the permeabilized cell in vitro transport system, nuclear import of SREBP-2 is reconstituted only by importin β in conjunction with Ran and its interacting protein p10/NTF2. We further demonstrate that the helix-loop-helix–leucine zipper motif of SREBP-2 contains a novel type of nuclear localization signal, which binds directly to importin β.
Resumo:
Werner syndrome (WS) is a human progeroid syndrome characterized by the early onset of a large number of clinical features associated with the normal aging process. The complex molecular and cellular phenotypes of WS involve characteristic features of genomic instability and accelerated replicative senescence. The gene involved (WRN) was recently cloned, and its gene product (WRNp) was biochemically characterized as a helicase. Helicases play important roles in a variety of DNA transactions, including DNA replication, transcription, repair, and recombination. We have assessed the role of the WRN gene in transcription by analyzing the efficiency of basal transcription in WS lymphoblastoid cell lines that carry homozygous WRN mutations. Transcription was measured in permeabilized cells by [3H]UTP incorporation and in vitro by using a plasmid template containing the RNA polymerase II (RNA pol II)–dependent adenovirus major late promoter. With both of these approaches, we find that the transcription efficiency in different WS cell lines is reduced to 40–60% of the transcription in cells from normal individuals. This defect can be complemented by the addition of normal cell extracts to the chromatin of WS cells. Addition of purified wild-type WRNp but not mutated WRNp to the in vitro transcription assay markedly stimulates RNA pol II–dependent transcription carried out by nuclear extracts. A nonhelicase domain (a direct repeat of 27 amino acids) also appears to have a role in transcription enhancement, as revealed by a yeast hybrid–protein reporter assay. This is further supported by the lack of stimulation of transcription when mutant WRNp lacking this domain was added to the in vitro assay. We have thus used several approaches to show a role for WRNp in RNA pol II transcription, possibly as a transcriptional activator. A deficit in either global or regional transcription in WS cells may be a primary molecular defect responsible for the WS clinical phenotype.
Resumo:
Dendritic mRNA transport and local translation at individual potentiated synapses may represent an elegant way to form synaptic memory. Recently, we characterized Staufen, a double-stranded RNA-binding protein, in rat hippocampal neurons and showed its presence in large RNA-containing granules, which colocalize with microtubules in dendrites. In this paper, we transiently transfect hippocampal neurons with human Staufen-green fluorescent protein (GFP) and find fluorescent granules in the somatodendritic domain of these cells. Human Stau-GFP granules show the same cellular distribution and size and also contain RNA, as already shown for the endogenous Stau particles. In time-lapse videomicroscopy, we show the bidirectional movement of these Staufen-GFP–labeled granules from the cell body into dendrites and vice versa. The average speed of these particles was 6.4 μm/min with a maximum velocity of 24.3 μm/min. Moreover, we demonstrate that the observed assembly into granules and their subsequent dendritic movement is microtubule dependent. Taken together, we have characterized a novel, nonvesicular, microtubule-dependent transport pathway involving RNA-containing granules with Staufen as a core component. This is the first demonstration in living neurons of movement of an essential protein constituent of the mRNA transport machinery.
Resumo:
A temperature-sensitive mutant, sec34-2, is defective in the late stages of endoplasmic reticulum (ER)-to-Golgi transport. A high-copy suppressor screen that uses the sec34-2 mutant has resulted in the identification of the SEC34 structural gene and a novel gene called GRP1. GRP1 encodes a previously unidentified hydrophilic yeast protein related to the mammalian Golgi protein golgin-160. Although GRP1 is not essential for growth, the grp1Δ mutation displays synthetic lethal interactions with several mutations that result in ER accumulation and a block in the late stages of ER-to-Golgi transport, but not with those that block the budding of vesicles from the ER. Our findings suggest that Grp1p may facilitate membrane traffic indirectly, possibly by maintaining Golgi function. In an effort to identify genes whose products physically interact with Sec34p, we also tested the ability of overexpressed SEC34 to suppress known secretory mutations that block vesicular traffic between the ER and the Golgi. This screen revealed that SEC34 specifically suppresses sec35-1. SEC34 encodes a hydrophilic protein of ∼100 kDa. Like Sec35p, which has been implicated in the tethering of ER-derived vesicles to the Golgi, Sec34p is predominantly soluble. Sec34p and Sec35p stably associate with each other to form a multiprotein complex of ∼480 kDa. These data indicate that Sec34p acts in conjunction with Sec35p to mediate a common step in vesicular traffic.
Resumo:
Smads are intermediate effector proteins that transduce the TGF-β signal from the plasma membrane to the nucleus, where they participate in transactivation of downstream target genes. We have shown previously that coactivators p300/CREB-binding protein are involved in TGF-β–mediated transactivation of two Cdk inhibitor genes, p21 and p15. Here we examined the possibility that Smads function to regulate transcription by directly interacting with p300/CREB-binding protein. We show that Smad3 can interact with a C-terminal fragment of p300 in a temporal and phosphorylation-dependent manner. TGF-β–mediated phosphorylation of Smad3 potentiates the association between Smad3 and p300, likely because of an induced conformational change that removes the autoinhibitory interaction between the N- and C-terminal domains of Smad3. Consistent with a role for p300 in the transcription regulation of multiple genes, overexpression of a Smad3 C-terminal fragment causes a general squelching effect on multiple TGF-β–responsive reporter constructs. The adenoviral oncoprotein E1A can partially block Smad-dependent transcriptional activation by directly competing for binding to p300. Taken together, these findings define a new role for phosphorylation of Smad3: in addition to facilitating complex formation with Smad4 and promoting nuclear translocation, the phosphorylation-induced conformational change of Smad3 modulates its interaction with coactivators, leading to transcriptional regulation.
Resumo:
Myosin II heavy chain (MHC) specific protein kinase C (MHC-PKC), isolated from Dictyostelium discoideum, regulates myosin II assembly and localization in response to the chemoattractant cyclic AMP. Immunoprecipitation of MHC-PKC revealed that it resides as a complex with several proteins. We show herein that one of these proteins is a homologue of the 14–3-3 protein (Dd14–3-3). This protein has recently been implicated in the regulation of intracellular signaling pathways via its interaction with several signaling proteins, such as PKC and Raf-1 kinase. We demonstrate that the mammalian 14–3-3 ζ isoform inhibits the MHC-PKC activity in vitro and that this inhibition is carried out by a direct interaction between the two proteins. Furthermore, we found that the cytosolic MHC-PKC, which is inactive, formed a complex with Dd14–3-3 in the cytosol in a cyclic AMP-dependent manner, whereas the membrane-bound active MHC-PKC was not found in a complex with Dd14–3-3. This suggests that Dd14–3-3 inhibits the MHC-PKC in vivo. We further show that MHC-PKC binds Dd14–3-3 as well as 14–3-3ζ through its C1 domain, and the interaction between these two proteins does not involve a peptide containing phosphoserine as was found for Raf-1 kinase. Our experiments thus show an in vivo function for a member of the 14–3-3 family and demonstrate that MHC-PKC interacts directly with Dd14–3-3 and 14–3-3ζ through its C1 domain both in vitro and in vivo, resulting in the inhibition of the kinase.
Resumo:
Alternative pre-mRNA splicing patterns can change an extracellular stimulus, but the signaling pathways leading to these changes are still poorly characterized. Here, we describe a tyrosine-phosphorylated nuclear protein, YT521-B, and show that it interacts with the nuclear transcriptosomal component scaffold attachment factor B, and the 68-kDa Src substrate associated during mitosis, Sam68. Northern blot analysis demonstrated ubiquitous expression, but detailed RNA in situ analysis revealed cell type specificity in the brain. YT521-B protein is localized in the nucleoplasm and concentrated in 5–20 large nuclear dots. Deletion analysis demonstrated that the formation of these dots depends on the presence of the amino-terminal glutamic acid-rich domain and the carboxyl-terminal glutamic acid/arginine-rich region. We show that the latter comprises an important protein–protein interaction domain. The Src family kinase p59fyn-mediated tyrosine phosphorylation of Sam68 negatively regulates its association with YT521-B, and overexpression of p59fyn dissolves nuclear dots containing YT521-B. In vivo splicing assays demonstrated that YT521-B modulates alternative splice site selection in a concentration-dependent manner. Together, our data indicate that YT521-B and Sam68 may be part of a signal transduction pathway that influences splice site selection.
Resumo:
An improved mammalian two-hybrid system designed for interaction trap screening is described in this paper. CV-1/EBNA-1 monkey kidney epithelial cells expressing Epstein–Barr virus nuclear antigen 1 (EBNA-1) were stably transfected with a reporter plasmid for GAL4-dependent expression of the green fluorescent protein (GFP). A resulting clone, GB133, expressed GFP strongly when transfected transiently with transcriptional activators fused to GAL4 DNA-binding domain with minimal background GFP expression. GB133 cells maintained plasmids containing the OriP Epstein–Barr virus replication origin that directs replication of plasmids in mammalian cells in the presence of the EBNA-1 protein. GB133 cells transfected stably with a model bait expressed GFP when further transfected transiently with an expression plasmid for a known positive prey. When the bait-expressing GB133 cells were transfected transiently with an OriP-containing expression plasmid for the positive prey together with excess amounts of empty vector, cells that received the positive prey were readily identified by green fluorescence in cell culture and eventually formed green fluorescent microcolonies, because the prey plasmid was maintained by the EBNA-1/Ori-P system. The green fluorescent microcolonies were harvested directly from the culture dishes under a fluorescence microscope, and total DNA was then prepared. Prey-encoding cDNA was recovered by PCR using primers annealing to the vector sequences flanking the insert-cloning site. This system should be useful in mammalian cells for efficient screening of cDNA libraries by two-hybrid interaction.
Resumo:
STATs are activated by tyrosine phosphorylation on cytokine stimulation. A tyrosine-phosphorylated STAT forms a functional dimer through reciprocal Src homology 2 domain (SH2)–phosphotyrosyl peptide interactions. IFN treatment induces the association of PIAS1 and Stat1, which results in the inhibition of Stat1-mediated gene activation. The molecular basis of the cytokine-dependent PIAS1–Stat1 interaction has not been understood. We report here that a region near the COOH terminus of PIAS1 (amino acids 392–541) directly interacts with the NH2-terminal domain of Stat1 (amino acids 1–191). A mutant PIAS1 lacking the Stat1-interacting domain failed to inhibit Stat1-mediated gene activation. By using a modified yeast two-hybrid assay, we demonstrated that PIAS1 specifically interacts with the Stat1 dimer, but not tyrosine-phosphorylated or -unphosphorylated Stat1 monomer. In addition, whereas the NH2-terminal region of PIAS1 does not interact with Stat1, it serves as a modulatory domain by preventing the interaction of the COOH-terminal domain of PIAS1 with the Stat1 monomer. Thus, the cytokine-induced PIAS1–Stat1 interaction is mediated through the specific recognition of the dimeric form of Stat1 by PIAS1.
Resumo:
The fungus Trichoderma harzianum is a potent mycoparasite of various plant pathogenic fungi. We have studied the molecular regulation of mycoparasitism in the host/mycoparasite system Botrytis cinerea/T. harzianum. Protein extracts, prepared from various stages of mycoparasitism, were used in electrophoretic mobility-shift assays (EMSAs) with two promoter fragments of the ech-42 (42-kDa endochitinase-encoding) gene of T. harzianum. This gene was chosen as a model because its expression is triggered during mycoparasitic interaction [Carsolio, C., Gutierrez, A., Jimenez, B., van Montagu, M. & Herrera-Estrella, A. (1994) Proc. Natl. Acad. Sci. USA 91, 10903–10907]. All cell-free extracts formed high-molecular weight protein–DNA complexes, but those obtained from mycelia activated for mycoparasitic attack formed a complex with greater mobility. Competition experiments, using oligonucleotides containing functional and nonfunctional consensus sites for binding of the carbon catabolite repressor Cre1, provided evidence that the complex from nonmycoparasitic mycelia involves the binding of Cre1 to both fragments of the ech-42 promoter. The presence of two and three consensus sites for binding of Cre1 in the two ech-42 promoter fragments used is consistent with these findings. In contrast, the formation of the protein–DNA complex from mycoparasitic mycelia is unaffected by the addition of the competing oligonucleotides and hence does not involve Cre1. Addition of equal amounts of protein of cell-free extracts from nonmycoparasitic mycelia converted the mycoparasitic DNA–protein complex into the nonmycoparasitic complex. The addition of the purified Cre1::glutathione S-transferase protein to mycoparasitic cell-free extracts produced the same effect. These findings suggest that ech-42 expression in T. harzianum is regulated by (i) binding of Cre1 to two single sites in the ech-42 promoter, (ii) binding of a “mycoparasitic” protein–protein complex to the ech-42 promoter in vicinity of the Cre1 binding sites, and (iii) functional inactivation of Cre1 upon mycoparasitic interaction to enable the formation of the mycoparasitic protein–DNA complex.
Resumo:
Proteins of the regulator of G protein signaling (RGS) family accelerate GTP hydrolysis by the α subunits (Gα) of G proteins, leading to rapid recovery of signaling cascades. Many different RGS proteins can accelerate GTP hydrolysis by an individual Gα, and GTP hydrolysis rates of different Gαs can be enhanced by the same RGS protein. Consequently, the mechanisms for specificity in RGS regulation and the residues involved remain unclear. Using the evolutionary trace (ET) method, we have identified a cluster of residues in the RGS domain that includes the RGS-Gα binding interface and extends to include additional functionally important residues on the surface. One of these is within helix α3, two are in α5, and three are in the loop connecting α5 and α6. A cluster of surface residues on Gα previously identified by ET, and composed predominantly of residues from the switch III region and helix α3, is spatially contiguous with the ET-identified residues in the RGS domain. This cluster includes residues proposed to interact with the γ subunit of Gtα's effector, cGMP phosphodiesterase (PDEγ). The proximity of these clusters suggests that they form part of an interface between the effector and the RGS-Gα complex. Sequence variations in these residues correlate with PDEγ effects on GTPase acceleration. Because ET identifies residues important for all members of a protein family, these residues likely form a general site for regulation of G protein-coupled signaling cascades, possibly by means of effector interactions.