94 resultados para Rna Genes
Resumo:
An immunological screening strategy was used to select microbial genes expressed only in the host. Differential screening of a Borrelia burgdorferi (the Lyme disease agent) expression library identified a gene (p21) encoding a 20.7-kDa antigen that reacted with antibodies in serum from actively infected mice but not serum from mice immunized with heat-killed B. burgdorferi. Selective expression of p21 in the infected host was confirmed by Northern blot analysis and RNA PCR. Further differential screening of the expression library identified at least five additional B. burgdorferi genes are selectively expressed in vivo. This screening method can be used to identify genes induced in vivo in a wide variety of pathogenic microorganisms for which a gene transfer system is not currently available.
Resumo:
A large family of genes encodes proteins with RNA recognition motifs that are presumed to bind RNA and to function in posttranscriptional regulation. Neural-specific members of this family include elav, a gene required for correct differentiation and maintenance of neurons in Drosophila melanogaster, and a related gene, HuD, which is expressed in human neuronal cells. I have identified genes related to elav and HuD in Xenopus laevis, zebrafish, and mouse that define a family of four closely related vertebrate elav-like genes (elrA, elrB, elrC, and elrD) in fish, frogs, and mammals. In addition to protein sequence conservation, a segment of the 3'-untranslated sequence of elrD is also conserved, implying a functional role in elrD expression. In adult frogs, elrC and elrD are exclusively expressed in the brain, whereas elrB is expressed in brain, testis, and ovary. During Xenopus development, elrC and elrD RNAs are detected by late gastrula and late neurula stages, respectively, whereas a nervous system-specific elrB RNA species is expressed by early tadpole stage. Additional elrB transcripts are detected in the ovary and early embryo, demonstrating a maternal supply of mRNA and possibly of protein. These expression patterns suggest a role for different elav-like genes in early development and neuronal differentiation. Surprisingly, elrA is expressed in all adult tissues tested and at all times during development. Thus, the widely expressed elrA is expected to have a related function in all cells.
Resumo:
Yeast RNA polymerase II holoenzymes have been described that consist of RNA polymerase II, a subset of general transcription factors, and nine SRB regulatory proteins. The feature that distinguishes the RNA polymerase II holoenzymes from other forms of RNA polymerase II in the cell is their tight association with SRB proteins. We investigated the fraction of genes that require SRB proteins in vivo by examining the effect of temperature-sensitive mutations in SRB genes on transcription by RNA polymerase II. Upon transfer to the restrictive temperature, there is a rapid and general shutdown of mRNA synthesis in srb mutant cells. These data, combined with the observation that essentially all of the SRB protein in cells is tightly associated with RNA polymerase II molecules, argue that SRB-containing holoenzymes are the form of RNA polymerase II recruited to most promoters in the cell.
Resumo:
Transcription of downstream genes in the early operons of phage lambda requires a promoter-proximal element known as nut. This site acts in cis in the form of RNA to assemble a transcription antitermination complex which is composed of lambda N protein and at least four host factors. The nut-site RNA contains a small stem-loop structure called boxB. Here, we show that boxB RNA binds to N protein with high affinity and specificity. While N binding is confined to the 5' subdomain of the stem-loop, specific N recognition relies on both an intact stem-loop structure and two critical nucleotides in the pentamer loop. Substitutions of these nucleotides affect both N binding and antitermination. Remarkably, substitutions of other loop nucleotides also diminish antitermination in vivo, yet they have no detectable effect on N binding in vitro. These 3' loop mutants fail to support antitermination in a minimal system with RNA polymerase (RNAP), N, and the host factor NusA. Furthermore, the ability of NusA to stimulate the formation of the RNAP-boxB-N complex is diminished with these mutants. Hence, we suggest that boxB RNA performs two critical functions in antitermination. First, boxB binds to N and secures it near RNAP to enhance their interaction, presumably by increasing the local concentration of N. Second, boxB cooperates with NusA, most likely to bring N and RNAP in close contact and transform RNAP to the termination-resistant state.