144 resultados para RECOMBINANT-HUMAN-ERYTHROPOIETIN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroblastoma (NB) is a common pediatric tumor that exhibits a wide range of biological and clinical heterogeneity. EPH (erythropoietin-producing hepatoma amplified sequence) family receptor tyrosine kinases and ligand ephrins play pivotal roles in neural and cardiovascular development. High-level expression of transcripts encoding EPHB6 receptors (EPHB6) and its ligands ephrin-B2 and ephrin-B3 (EFNB2, EFNB3) is associated with low-stage NB (stages 1, 2, and 4S) and high TrkA expression. In this study, we showed that EFNB2 and TrkA expressions were associated with both tumor stage and age, whereas EPHB6 and EFNB3 expressions were solely associated with tumor stage, suggesting that these genes were expressed in distinct subsets of NB. Kaplan-Meier and Cox regression analyses revealed that high-level expression of EPHB6, EFNB2, and EFNB3 predicted favorable NB outcome (P < 0.005), and their expression combined with TrkA expression predicted the disease outcome more accurately than each variable alone (P < 0.00005). Interestingly, if any one of the four genes (EPHB6, EFNB2, EFNB3, or TrkA) was expressed at high levels in NB, the patient survival was excellent (>90%). To address whether a good disease outcome of NB was a consequence of high-level expression of a “favorable NB gene,” we examined the effect of EPHB6 on NB cell lines. Transfection of EPHB6 cDNA into IMR5 and SY5Y expressing little endogenous EPHB6 resulted in inhibition of their clonogenicity in culture. Furthermore, transfection of EPHB6 suppressed the tumorigenicity of SY5Y in a mouse xenograft model, demonstrating that high-level expressions of favorable NB genes, such as EPHB6, can in fact suppress malignant phenotype of unfavorable NB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The acrosome reaction of spermatozoa is a complex, calcium-dependent, regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. However, very little is known about the molecules that mediate and regulate this unique fusion process. Here, we show that N-ethylmaleimide-sensitive factor (NSF), a protein essential for most fusion events, is present in the acrosome of several mammalian spermatozoa. Moreover, we demonstrate that calcium-dependent exocytosis of permeabilized sperm requires active NSF. Previously, we have shown that the addition of the active (GTP-bound) form of the small GTPase Rab3A triggers exocytosis in permeabilized spermatozoa. In the present report we show that Rab3A is necessary for calcium-dependent exocytosis. The activation of Rab3A protects NSF from N-ethylmaleimide inhibition and precludes the exchange of the endogenous protein with recombinant dominant negative mutants of NSF. Furthermore, Rab3A activation of acrosomal exocytosis requires active NSF. Our results suggest that, upon calcium stimulation, Rab3A switches to its active GTP-bound form, triggering the formation of a protein complex in which NSF is protected. This process is suggested to be an essential part of the molecular mechanism of membrane fusion leading to the release of the acrosomal contents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloning and sequencing of the upstream region of the gene of the CC chemokine HCC-1 led to the discovery of an adjacent gene coding for a CC chemokine that was named “HCC-2.” The two genes are separated by 12-kbp and reside in a head-to-tail orientation on chromosome 17. At variance with the genes for HCC-1 and other human CC chemokines, which have a three-exon-two-intron structure, the HCC-2 gene consists of four exons and three introns. Expression of HCC-2 and HCC-1 as studied by Northern analysis revealed, in addition to the regular, monocistronic mRNAs, a common, bicistronic transcript. In contrast to HCC-1, which is expressed constitutively in numerous human tissues, HCC-2 is expressed only in the gut and the liver. HCC-2 shares significant sequence homology with CKβ8 and the murine chemokines C10, CCF18/MRP-2, and macrophage inflammatory protein 1γ, which all contain six instead of four conserved cysteines. The two additional cysteines of HCC-2 form a third disulfide bond, which anchors the COOH-terminal domain to the core of the molecule. Highly purified recombinant HCC-2 was tested on neutrophils, eosinophils, monocytes, and lymphocytes and was found to exhibit marked functional similarities to macrophage inflammatory protein 1α. It is a potent chemoattractant and inducer of enzyme release in monocytes and a moderately active attractant for eosinophils. Desensitization studies indicate that HCC-2 acts mainly via CC chemokine receptor CCR1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfite oxidase catalyzes the terminal reaction in the degradation of sulfur amino acids. Genetic deficiency of sulfite oxidase results in neurological abnormalities and often leads to death at an early age. The mutation in the sulfite oxidase gene responsible for sulfite oxidase deficiency in a 5-year-old girl was identified by sequence analysis of cDNA obtained from fibroblast mRNA to be a guanine to adenine transition at nucleotide 479 resulting in the amino acid substitution of Arg-160 to Gln. Recombinant protein containing the R160Q mutation was expressed in Escherichia coli, purified, and characterized. The mutant protein contained its full complement of molybdenum and heme, but exhibited 2% of native activity under standard assay conditions. Absorption spectroscopy of the isolated molybdenum domains of native sulfite oxidase and of the R160Q mutant showed significant differences in the 480- and 350-nm absorption bands, suggestive of altered geometry at the molybdenum center. Kinetic analysis of the R160Q protein showed an increase in Km for sulfite combined with a decrease in kcat resulting in a decrease of nearly 1,000-fold in the apparent second-order rate constant kcat/Km. Kinetic parameters for the in vitro generated R160K mutant were found to be intermediate in value between those of the native protein and the R160Q mutant. Native sulfite oxidase was rapidly inactivated by phenylglyoxal, yielding a modified protein with kinetic parameters mimicking those of the R160Q mutant. It is proposed that Arg-160 attracts the anionic substrate sulfite to the binding site near the molybdenum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lysyl hydroxylase (EC 1.14.11.4), a homodimer, catalyzes the formation of hydroxylysine in collagens. Recently, an isoenzyme termed lysyl hydroxylase 2 has been cloned from human sources [M. Valtavaara, H. Papponen, A.-M. Pirttilä, K. Hiltunen, H. Helander and R. Myllylä (1997) J. Biol. Chem. 272, 6831–6834]. We report here on the cloning of a third human lysyl hydroxylase isoenzyme, termed lysyl hydroxylase 3. The cDNA clones encode a 738 amino acid polypeptide, including a signal peptide of 24 residues. The overall amino acid sequence identity between the processed human lysyl hydroxylase 3 and 1 polypeptides is 59%, and that between the processed lysyl hydroxylase 3 and 2 polypeptides is 57%, whereas the identity to the processed Caenorhabditis elegans polypeptide is only 45%. All four recently identified critical residues at the catalytic site, two histidines, one aspartate, and one arginine, are conserved in all these polypeptides. The mRNA for lysyl hydroxylase 3 was found to be expressed in a variety of tissues, but distinct differences appear to exist in the expression patterns of the three isoenzyme mRNAs. Recombinant lysyl hydroxylase 3 expressed in insect cells by means of a baculovirus vector was found to be more soluble than lysyl hydroxylase 1 expressed in the same cell type. No differences in catalytic properties were found between the recombinant lysyl hydroxylase 3 and 1 isoenzymes. Deficiency in lysyl hydroxylase 1 activity is known to cause the type VI variant of the Ehlers–Danlos syndrome, and it is therefore possible that deficiency in lysyl hydroxylase 3 activity may lead to some other variant of this syndrome or to some other heritable connective tissue disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin K antagonists such as warfarin inhibit the vitamin K-dependent γ-glutamyl carboxylation during protein processing and block the secretion of under-γ-carboxylated prothrombin (FII) in the rat but not in the human or bovine. Under-γ-carboxylated prothrombin is also secreted from warfarin-treated human (HepG2) cell cultures but is degraded in the endoplasmic reticulum in warfarin-treated rat (H-35) cell cultures. This differential response to warfarin has been shown to be determined by the structural difference in the proteins rather than by the origin of the cell line. When recombinant rat prothrombin (rFII) and human prothrombin (hFII) were expressed in a transformed human kidney cell line (HEK293), secretion of rFII but not hFII was drastically decreased in response to warfarin. To determine the structural signal required for this differential response, chimeric cDNAs with the propeptide/Gla domains, kringle domain, and serine protease domain exchanged between rFII and hFII were generated (FIIRHH and FIIHRR, FIIRRH and FIIHHR, FIIRHR and FIIHRH) and expressed in both warfarin-treated HEK293 cells and HepG2 cells. The presence of the hFII kringle domain changed the stability of rFII to that of hFII, and the rFII kringle domain changed the stability of hFII to that of rFII. The kringle domain therefore is critical in determining the metabolic fate of under-γ-carboxylated prothrombin precursors during processing. Prothrombin contains two kringle structures, and expression of additional rFII/hFII chimeras (FIIHrhH and FIIHhrH, FIIRrhR, and FIIRhrR) was used to determine that the first of the two kringles plays a more important role in the recognition process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

About 70% of hepatocellular carcinomas are known to express α-fetoprotein, which is normally expressed in fetal but not in adult livers. To induce herpes simplex virus-thymidine kinase expression in these cancer cells, we constructed an adeno-associated viral vector containing the HSV-TK gene under the control of the α-fetoprotein enhancer and albumin promoter. We previously demonstrated in vitro that although this vector can transduce a variety of human cells, only transduced AFP and albumin-expressing hepatocellular carcinoma cell lines were sensitive to killing by ganciclovir (GCV). In the present study, we explored the effect of this vector on hepatocellular carcinoma cells in vivo. Subcutaneous tumors generated in nude mice by implanting hepatocellular carcinoma cells previously transduced with this vector shrank dramatically after treatment with GCV. Bystander effect was also observed on the tumors generated by mixing transduced and untransduced cells. To test whether the tumor cells can be transduced by the virus in vivo, we injected the recombinant adeno-associated virus into tumors generated by untransduced hepatocarcinoma cell line. Tumor growth were retarded after treatment with GCV. These experiments demonstrate the feasibility of in vivo transduction of tumor cell with rAAV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although long suspected from histochemical evidence for carbonic anhydrase (CA) activity on neurons and observations that CA inhibitors enhance the extracellular alkaline shifts associated with synaptic transmission, an extracellular CA in brain had not been identified. A candidate for this CA was suggested by the recent discovery of membrane CA (CA XIV) whose mRNA is expressed in mouse and human brain and in several other tissues. For immunolocalization of CA XIV in mouse and human brain, we developed two antibodies, one against a secretory form of enzymatically active recombinant mouse CA XIV, and one against a synthetic peptide corresponding to the 24 C-terminal amino acids in the human enzyme. Immunostaining for CA XIV was found on neuronal membranes and axons in both mouse and human brain. The highest expression was seen on large neuronal bodies and axons in the anterolateral part of pons and medulla oblongata. Other CA XIV-positive sites included the hippocampus, corpus callosum, cerebellar white matter and peduncles, pyramidal tract, and choroid plexus. Mouse brain also showed a positive reaction in the molecular layer of the cerebral cortex and granular cellular layer of the cerebellum. These observations make CA XIV a likely candidate for the extracellular CA postulated to have an important role in modulating excitatory synaptic transmission in brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate stem-cell antigen (PSCA) is a cell-surface antigen expressed in normal prostate and overexpressed in prostate cancer tissues. PSCA expression is detected in over 80% of patients with local disease, and elevated levels of PSCA are correlated with increased tumor stage, grade, and androgen independence, including high expression in bone metastases. We evaluated the therapeutic efficacy of anti-PSCA mAbs in human prostate cancer xenograft mouse models by using the androgen-dependent LAPC-9 xenograft and the androgen-independent recombinant cell line PC3-PSCA. Two different anti-PSCA mAbs, 1G8 (IgG1κ) and 3C5 (IgG2aκ), inhibited formation of s.c. and orthotopic xenograft tumors in a dose-dependent manner. Furthermore, administration of anti-PSCA mAbs led to retardation of established orthotopic tumor growth and inhibition of metastasis to distant sites, resulting in a significant prolongation in the survival of tumor-bearing mice. These studies suggest PSCA as an attractive target for immunotherapy and demonstrate the therapeutic potential of anti-PSCA mAbs for the treatment of local and metastatic prostate cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influenza A virus pandemic of 1918–1919 resulted in an estimated 20–40 million deaths worldwide. The hemagglutinin and neuraminidase sequences of the 1918 virus were previously determined. We here report the sequence of the A/Brevig Mission/1/18 (H1N1) virus nonstructural (NS) segment encoding two proteins, NS1 and nuclear export protein. Phylogenetically, these genes appear to be close to the common ancestor of subsequent human and classical swine strain NS genes. Recently, the influenza A virus NS1 protein was shown to be a type I IFN antagonist that plays an important role in viral pathogenesis. By using the recently developed technique of generating influenza A viruses entirely from cloned cDNAs, the hypothesis that the 1918 virus NS1 gene played a role in virulence was tested in a mouse model. In a BSL3+ laboratory, viruses were generated that possessed either the 1918 NS1 gene alone or the entire 1918 NS segment in a background of influenza A/WSN/33 (H1N1), a mouse-adapted virus derived from a human influenza strain first isolated in 1933. These 1918 NS viruses replicated well in tissue culture but were attenuated in mice as compared with the isogenic control viruses. This attenuation in mice may be related to the human origin of the 1918 NS1 gene. These results suggest that interaction of the NS1 protein with host-cell factors plays a significant role in viral pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human and animal fatty acid synthases are dimers of two identical multifunctional proteins (Mr 272,000) arranged in an antiparallel configuration. This arrangement generates two active centers for fatty acid synthesis separated by interdomain (ID) regions and predicts that two appropriate halves of the monomer should be able to reconstitute an active fatty acid synthesizing center. This prediction was confirmed by the reconstitution of the synthase active center by using two heterologously expressed halves of the monomer protein. Each of these recombinant halves of synthase monomer contains half of the ID regions. We show here that the fatty acid synthase activity could not be reconstituted when the ID sequences present in the two recombinant halves are deleted, suggesting that these ID sequences are essential for fatty acid synthase dimer formation. Further, we confirm that the ID sequences are the only regions of fatty acid synthase monomers that showed significant dimer formation, by using the yeast two-hybrid system. These results are consistent with the proposal that the ID region, which has no known catalytic activity, associates readily and holds together the two dynamic active centers of the fatty acid synthase dimer, therefore playing an important role in the architecture of catalytically active fatty acid synthase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Techniques of tissue engineering and cell and molecular biology were used to create a biodegradable scaffold for transfected cells to produce complex proteins. Mullerian Inhibiting Substance (MIS) causes regression of Mullerian ducts in the mammalian embryo. MIS also causes regression in vitro of ovarian tumor cell lines and primary cells from ovarian carcinomas, which derive from Mullerian structures. In a strategy to circumvent the complicated purification protocols for MIS, Chinese hamster ovary cells transfected with the human MIS gene were seeded onto biodegradable polymers of polyglycolic acid fibers and secretion of MIS confirmed. The polymer-cell graft was implanted into the right ovarian pedicle of severe combined immunodeficient mice. Serum MIS in the mice rose to supraphysiologic levels over time. One week after implantation of the polymer-cell graft, IGROV-1 human tumors were implanted under the renal capsule of the left kidney. Growth of the IGROV-1 tumors was significantly inhibited in the animals with a polymer-cell graft of MIS-producing cells, compared with controls. This novel MIS delivery system could have broader applications for other inhibitory agents not amenable to efficient purification and provides in vivo evidence for a role of MIS in the treatment of ovarian cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binding of erythropoietin (Epo) to the Epo receptor (EpoR) is crucial for production of mature red cells. Although it is well established that the Epo-bound EpoR is a dimer, it is not clear whether, in the absence of ligand, the intact EpoR is a monomer or oligomer. Using antibody-mediated immunofluorescence copatching (oligomerizing) of epitope-tagged receptors at the surface of live cells, we show herein that a major fraction of the full-length murine EpoR exists as preformed dimers/oligomers in BOSC cells, which are human embryo kidney 293T-derived cells. This observed oligomerization is specific because, under the same conditions, epitope-tagged EpoR did not oligomerize with several other tagged receptors (thrombopoietin receptor, transforming growth factor β receptor type II, or prolactin receptor). Strikingly, the EpoR transmembrane (TM) domain but not the extracellular or intracellular domains enabled the prolactin receptor to copatch with EpoR. Preformed EpoR oligomers are not constitutively active and Epo binding was required to induce signaling. In contrast to tyrosine kinase receptors (e.g., insulin receptor), which cannot signal when their TM domain is replaced by the strongly dimerizing TM domain of glycophorin A, the EpoR could tolerate the replacement of its TM domain with that of glycophorin A and retained signaling. We propose a model in which TM domain-induced dimerization maintains unliganded EpoR in an inactive state that can readily be switched to an active state by physiologic levels of Epo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A small percentage of human T lymphocytes, predominantly CD8+ T cells, express receptors for HLA class 1 molecules of natural killer type (NK-R) that are inhibitory for T-cell antigen receptor (TCR)-mediated functions. In the present study, it is demonstrated that the various NK-R molecules typically expressed by NK cells are also expressed on periheral blood T lymphocytes. These CD3+ NK-R+ cells have a cell surface phenotype typical of memory cells as indicated by the expression of CD45RO and CD29 and by the lack of CD28 and CD45RA. Furthermore, by the combined use of anti-TCR V beta-specific antibodies and a semiquantitative polymerase chain reaction assay, the TCR repertoire in this CD3+ NK-R+ cell subset was found to be skewed; in fact, one or two V beta families were largely represented, and most of the other V beta s were barely detected. In addition, analysis of recombinant clones of the largely represented V beta families demonstrated that these V beta s were oligoclonally or monoclonally expanded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have generated a human 293-derived retroviral packaging cell line (293GPG) capable of producing high titers of recombinant Moloney murine leukemia virus particles that have incorporated the vesicular stomatitis virus G (VSV-G) protein. To achieve expression of the retroviral gag-pol polyprotein, the precise coding sequences for gag-pol were introduced into a vector which utilizes totally nonretroviral signals for gene expression. Because constitutive expression of the VSV-G protein is toxic in 293 cells, we used the tetR/VP 16 transactivator and teto minimal promoter system for inducible, tetracycline-regulatable expression of VSV-G. After stable transfection of the 293GPG packaging cell line with the MFG.SnlsLacZ retroviral vector construct, it was possible to readily isolate stable virus-producing cell lines with titers approaching 10(7) colony-forming units/ml. Transient transfection of 293GPG cells using a modified version of MFG.SnlsLacZ, in which the cytomegalovirus IE promoter was used to drive transcription of the proviral genome, led to titers of approximately 10(6) colony-forming units/ml. The retroviral/VSV-G pseudotypes generated using 293GPG cells were significantly more resistant to human complement than commonly used amphotropic vectors and could be highly concentrated (> 1000-fold). This new packaging cell line may prove to be particularly useful for assessing the potential use of retroviral vectors for direct in vivo gene transfer. The design of the cell line also provides at least theoretical advantages over existing cell lines with regard to the possible release of replication-competent virus.