160 resultados para RADIOLIGAND RECEPTOR BINDING ASSAYS
Resumo:
Low pH enhances tumor necrosis factor alpha (TNF)-induced cytolysis of cancer cells and TNF-membrane interactions that include binding, insertion, and ion-channel formation. We have also found that TNF increases Na+ influx in cells. Here, we examined the structural features of the TNF-membrane interaction pathway that lead to channel formation. Fluorometric studies link TNF's acid-enhanced membrane interactions to rapid but reversible acquisition of hydrophobic surface properties. Intramembranous photolabeling shows that (i) protonation of TNF promotes membrane insertion, (ii) the physical state of the target bilayer affects the kinetics and efficiency of TNF insertion, and (iii) binding and insertion of TNF are two distinct events. Acidification relaxes the trimeric structure of soluble TNF so that the cryptic carboxyl termini, centrally located at the base of the trimer cone, become susceptible to carboxypeptidase Y. After membrane insertion, TNF exhibits a trimeric configuration in which the carboxyl termini are no longer exposed; however, the proximal salt-bridged Lys-11 residues as well as regional surface amino acids (Glu-23, Arg-32, and Arg-44) are notably more accessible to proteases. The sequenced cleavage products bear the membrane-restricted photoreactive probe, proof that surface-cleaved TNF has an intramembranous disposition. In summary, the trimer's structural plasticity is a major determinant of its channel-forming ability. Channel formation occurs when cracked or partially splayed trimers bind and penetrate the bilayer. Reannealing leads to a slightly relaxed trimeric structure. The directionality of bilayer penetration conforms with x-ray data showing that receptor binding to the monomer interfaces of TNF poises the tip of the trimeric cone directly above the target cell membrane.
Resumo:
The extensive refolding of the membrane-anchoring chain of hemagglutinin (HA) of influenza virus (termed HA2) in cellular endosomes, which initiates viral entry by membrane fusion, suggests that viral HA is meta-stable. HA2 polypeptide residues 38-175 expressed in Escherichia coli are reported here to fold in vivo into a soluble trimer. The structure appears to be the same as the low-pH-induced conformation of viral HA2 by alpha-helical content, thermodynamic stability, protease dissection, electron microscopy, and antibody binding. These results provide evidence that the structure of the low-pH-induced fold of viral HA2 (TBHA2) observed crystallographically is the lowest-energy-state fold of the HA2 polypeptide. They indicate that the HA2 conformation in viral HA before low pH activation of its fusion potential is metastable and suggest that removal of the receptor-binding chain (HA1) is enough to allow HA2 to adopt the stable state. Further, they provide direct evidence that low pH is not required to form the membrane-fusion conformation but acts to make this state kinetically accessible in viral HA.
Resumo:
Apolipoprotein E (apoE) is critical in the modulation of cholesterol and phospholipid transport between cells of different types. Human apoE is a polymorphic protein with three common alleles, APO epsilon 2, APO epsilon 3, and APO epsilon 4. ApoE4 is associated with sporadic and late-onset familial Alzheimer disease (AD). Gene dose was shown to have an effect on risk of developing AD, age of onset, accumulation of senile plaques in the brain, and reduction of choline acetyltransferase (ChAT) activity in the hippocampus of AD subjects. To characterize the possible impact of the apoE4 allele on cholinergic markers in AD, we examined the effect of apoE4 allele copy number on pre- and postsynaptic markers of cholinergic activity. ApoE4 allele copy number showed an inverse relationship with residual brain ChAT activity and nicotinic receptor binding sites in both the hippocampal formation and the temporal cortex of AD subjects. AD cases lacking the apoE4 allele showed ChAT activities close or within age-matched normal control values. The effect of the apoE4 allele on cholinomimetic drug responsiveness was assessed next in a group (n = 40) of AD patients who completed a double-blind, 30-week clinical trial of the cholinesterase inhibitor tacrine. Results showed that > 80% of apoE4-negative AD patients showed marked improvement after 30 weeks as measured by the AD assessment scale (ADAS), whereas 60% of apoE4 carriers had ADAS scores that were worse compared to baseline. These results strongly support the concept that apoE4 plays a crucial role in the cholinergic dysfunction associated with AD and may be a prognostic indicator of poor response to therapy with acetylcholinesterase inhibitors in AD patients.
Resumo:
VASP (vasodilator-stimulated phosphoprotein), an established substrate of cAMP- and cGMP-dependent protein kinases in vitro and in living cells, is associated with focal adhesions, microfilaments, and membrane regions of high dynamic activity. Here, the identification of an 83-kDa protein (p83) that specifically binds VASP in blot overlays of different cell homogenates is reported. With VASP overlays as a detection tool, p83 was purified from porcine platelets and used to generate monospecific polyclonal antibodies. VASP binding to purified p83 in solid-phase binding assays and the closely matching subcellular localization in double-label immunofluorescence analyses demonstrated that both proteins also directly interact as native proteins in vitro and possibly in living cells. The subcellular distribution, the biochemical properties, as well as microsequencing data revealed that porcine platelet p83 is related to chicken gizzard zyxin and most likely represents the mammalian equivalent of the chicken protein. The VASP-p83 interaction may contribute to the targeting of VASP to focal adhesions, microfilaments, and dynamic membrane regions. Together with our recent identification of VASP as a natural ligand of the profilin poly-(L-proline) binding site, our present results suggest that, by linking profilin to zyxin/p83, VASP may participate in spatially confined profilin-regulated F-actin formation.
A transgene coding for a human insulin analog has a mitogenic effect on murine embryonic beta cells.
Resumo:
We have investigated the mitogenic effect of three mutant forms of human insulin on insulin-producing beta cells of the developing pancreas. We examined transgenic embryonic and adult mice expressing (i) human [AspB10]-proinsulin/insulin ([AspB10]ProIN/IN), produced by replacement of histidine by aspartic acid at position 10 of the B chain and characterized by an increased affinity for the insulin receptor; (ii) human [LeuA3]insulin, produced by the substitution of leucine for valine in position 3 of the A chain, which exhibits decreased receptor binding affinity; and (iii) human [LeuA3, AspB10]insulin "double" mutation. During development, beta cells of AspB10 embryos were twice as abundant and had a 3 times higher rate of proliferation compared with beta cells of littermate controls. The mitogenic effect of [AspB10]ProIN/IN was specific for embryonic beta cells because the rate of proliferation of beta cells of adults and of glucagon (alpha) cells and adrenal chromaffin cells of embryos was similar in AspB10 mice and controls. In contrast to AspB10 embryos, the number of beta cells in the LeuA3 and "double" mutant lines was similar to the number in controls. These findings indicate that the [AspB10]ProIN/IN analog increased the rate of fetal beta-cell proliferation. The mechanism or mechanisms that mediate this mitogenic effect remain to be determined.
Resumo:
The ability of p53 protein to activate transcription is central to its tumor-suppressor function. We describe a genetic selection in Saccharomyces cerevisiae which was used to isolate a mutant strain defective in p53-mediated transcriptional activation. The defect was partially corrected by overexpression of a yeast gene named PAK1 (p53 activating kinase), which localizes to the left arm of chromosome IX. PAK1 is predicted to encode an 810-aa protein with regions of strong similarity to previously described Ser/Thr-specific protein kinases. PAK1 sequences upstream of the coding region are characteristic of those regulating genes involved in cell cycle control. Expression of PAK1 was associated with an increased specific activity of p53 in DNA-binding assays accompanied by a corresponding increase in transactivation. Thus, PAK1 is the prototype for a class of genes that can regulate the activity of p53 in vivo, and the system described here should be useful in identifying other genes in this class.
Resumo:
The cadherin-catenin complex is important for mediating homotypic, calcium-dependent cell-cell interactions in diverse tissue types. Although proteins of this complex have been identified, little is known about their interactions. Using a genetic assay in yeast and an in vitro protein-binding assay, we demonstrate that beta-catenin is the linker protein between E-cadherin and alpha-catenin and that E-cadherin does not bind directly to alpha-catenin. We show that a 25-amino acid sequence in the cytoplasmic domain of E-cadherin and the amino-terminal domain of alpha-catenin are independent binding sites for beta-catenin. In addition to beta-catenin and plakoglobin, another member of the armadillo family, p120 binds to E-cadherin. However, unlike beta-catenin, p120 does not bind alpha-catenin in vitro, although a complex of p120 and endogenous alpha-catenin could be immunoprecipitated from cell extracts. In vitro protein-binding assays using recombinant E-cadherin cytoplasmic domain and alpha-catenin revealed two catenin pools in cell lysates: an approximately 1000- to approximately 2000-kDa complex bound to E-cadherin and an approximately 220-kDa pool that did not contain E-cadherin. Only beta-catenin in the approximately 220-kDa pool bound exogenous E-cadherin. Delineation of these molecular linkages and the demonstration of separate pools of catenins in different cell lines provide a foundation for examining regulatory mechanisms involved in the assembly and function of the cadherin-catenin complex.
Resumo:
The X gene product encoded by the hepatitis B virus, termed pX, is a promiscuous transactivator of a variety of viral and cellular genes under the control of diverse cis-acting elements. Although pX does not appear to directly bind DNA, pX-responsive elements include the NF-kappa B, AP-1, and CRE (cAMP response element) sites. Direct protein-protein interactions occur between viral pX and the CRE-binding transcription factors CREB and ATF. Here we examine the mechanism of the protein-protein interactions occurring between CREB and pX by using recombinant proteins and in vitro DNA-binding assays. We demonstrate that pX interacts with the basic region-leucine zipper domain of CREB but not with the DNA-binding domain of the yeast transactivator protein Gal4. The interaction between CREB and pX increases the affinity of CREB for the CRE site by an order of magnitude, although pX does not alter the rate of CREB dimerization. Methylation interference footprinting reveals differences between the CREB DNA and CREB-pX DNA complexes. These experiments demonstrate that pX titers the way CREB interacts with the CRE DNA and suggest that the basic, DNA-binding region of CREB is the target of pX. Transfection assays in PC12 cells with the CREB-dependent somatostatin promoter demonstrate a nearly 15-fold transcriptional induction after forskolin stimulation in the presence of pX. These results support the significance of the CREB-pX protein-protein interactions in vivo.
Resumo:
Several G-protein coupled receptors, such as the β1-adrenergic receptor (β1-AR), contain polyproline motifs within their intracellular domains. Such motifs in other proteins are known to mediate protein–protein interactions such as with Src homology (SH)3 domains. Accordingly, we used the proline-rich third intracellular loop of the β1-AR either as a glutathione S-transferase fusion protein in biochemical “pull-down” assays or as bait in the yeast two-hybrid system to search for interacting proteins. Both approaches identified SH3p4/p8/p13 (also referred to as endophilin 1/2/3), a SH3 domain-containing protein family, as binding partners for the β1-AR. In vitro and in human embryonic kidney (HEK) 293 cells, SH3p4 specifically binds to the third intracellular loop of the β1-AR but not to that of the β2-AR. Moreover, this interaction is mediated by the C-terminal SH3 domain of SH3p4. Functionally, overexpression of SH3p4 promotes agonist-induced internalization and modestly decreases the Gs coupling efficacy of β1-ARs in HEK293 cells while having no effect on β2-ARs. Thus, our studies demonstrate a role of the SH3p4/p8/p13 protein family in β1-AR signaling and suggest that interaction between proline-rich motifs and SH3-containing proteins may represent a previously underappreciated aspect of G-protein coupled receptor signaling.
Resumo:
In an effort to identify nuclear receptors important in retinal disease, we screened a retina cDNA library for nuclear receptors. Here we describe the identification of a retina-specific nuclear receptor (RNR) from both human and mouse. Human RNR is a splice variant of the recently published photoreceptor cell-specific nuclear receptor [Kobayashi, M., Takezawa, S., Hara, K., Yu, R. T., Umesono, Y., Agata, K., Taniwaki, M., Yasuda, K. & Umesono, K. (1999) Proc. Natl. Acad. Sci. USA 96, 4814–4819] whereas the mouse RNR is a mouse ortholog. Northern blot and reverse transcription–PCR analyses of human mRNA samples demonstrate that RNR is expressed exclusively in the retina, with transcripts of ≈7.5 kb, ≈3.0 kb, and ≈2.3 kb by Northern blot analysis. In situ hybridization with multiple probes on both primate and mouse eye sections demonstrates that RNR is expressed in the retinal pigment epithelium and in Müller glial cells. By using the Gal4 chimeric receptor/reporter cotransfection system, the ligand binding domain of RNR was found to repress transcriptional activity in the absence of exogenous ligand. Gel mobility shift assays revealed that RNR can interact with the promoter of the cellular retinaldehyde binding protein gene in the presence of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR). These data raise the possibility that RNR acts to regulate the visual cycle through its interaction with cellular retinaldehyde binding protein and therefore may be a target for retinal diseases such as retinitis pigmentosa and age-related macular degeneration.
Resumo:
The nicotinic acetylcholine receptor is the prototype ligand-gated ion channel. A number of aromatic amino acids have been identified as contributing to the agonist binding site, suggesting that cation–π interactions may be involved in binding the quaternary ammonium group of the agonist, acetylcholine. Here we show a compelling correlation between: (i) ab initio quantum mechanical predictions of cation–π binding abilities and (ii) EC50 values for acetylcholine at the receptor for a series of tryptophan derivatives that were incorporated into the receptor by using the in vivo nonsense-suppression method for unnatural amino acid incorporation. Such a correlation is seen at one, and only one, of the aromatic residues—tryptophan-149 of the α subunit. This finding indicates that, on binding, the cationic, quaternary ammonium group of acetylcholine makes van der Waals contact with the indole side chain of α tryptophan-149, providing the most precise structural information to date on this receptor. Consistent with this model, a tethered quaternary ammonium group emanating from position α149 produces a constitutively active receptor.
Resumo:
Numerous studies have established that polyvalency is a critical feature of cell surface carbohydrate recognition. Nevertheless, carbohydrate–protein interactions are typically evaluated by using assays that focus on the behavior of monovalent carbohydrate ligands in solution. It has generally been assumed that the relative affinities of monovalent carbohydrate ligands in solution correlate with their polyvalent avidities. In this paper we show that carbohydrate ligands synthesized directly on TentaGel beads interact with carbohydrate-binding proteins in a polyvalent manner. The carbohydrate-derivatized beads can, therefore, be used as model systems for cell surfaces to evaluate polyvalent carbohydrate–protein interactions. By using a combinatorial approach to synthesize solid-phase libraries of polyvalent carbohydrates, one can rapidly address key issues in the area of cell surface carbohydrate recognition. For example, studies reported herein demonstrate that there is an unanticipated degree of specificity in recognition processes involving polyvalent carbohydrates. However, the correlation between polyvalent avidities and solution affinities is poor. Apparently, the presentation of carbohydrates on the polymer surface has a profound influence on the interaction of the ligand with the protein receptor. These findings have implications for how carbohydrates function as recognition signals in nature, as well as for how polyvalent carbohydrate–protein interactions should be studied.
Resumo:
Recently, TAP42 was isolated as a high copy suppressor of sit4−, a yeast phosphatase related to protein phosphatase 2A (PP2A). TAP42 is related to the murine α4 protein, which was discovered independently by its association with Ig-α in the B cell receptor complex. Herein we show that a glutathione S-transferase (GST)–α4 fusion protein bound the catalytic subunit (C) of human PP2A from monomeric or multimeric preparations of PP2A in a “pull-down” assay. In an overlay assay, the GST–α4 protein bound to the phosphorylated and unphosphorylated forms of C that were separated in two-dimensional gels and immobilized on filters. The results show direct and exclusive binding of α4 to C. This is unusual because all known regulatory B subunits, or tumor virus antigens, bind stably only to the AC dimer of PP2A. The α4–C form of PP2A had an increased activity ratio compared with the AC form of PP2A when myelin basic protein phosphorylated by mitogen-activated protein kinase and phosphorylase a were used as substrates. Recombinant α4 cleaved from GST was phosphorylated by p56lck tyrosine kinase and protein kinase C. A FLAG-tagged α4 expressed in COS7 cells was recovered as a protein containing phosphoserine and coimmunoprecipitated with the C but not the A subunit of PP2A. Treatment of cells with rapamycin prevented the association of PP2A with FLAG-α4. The results reveal a novel heterodimer α4–C form of PP2A that may be involved in rapamycin-sensitive signaling pathways in mammalian cells.
Resumo:
2C is a typical alloreactive cytotoxic T lymphocyte clone that recognizes two different ligands. These ligands are adducts of the allo-major histocompatibility complex (MHC) molecule H-2Ld and an endogenous octapeptide, and of the self-MHC molecule H-2Kb and another peptide. MHC-binding and T-cell assays with synthetic peptides in combination with molecular modeling studies were employed to analyze the structural basis for this crossreactivity. The molecular surfaces of the two complexes differ greatly in densities and distributions of positive and negative charges. However, modifications of the peptides that increase similarity decrease the capacities of the resulting MHC peptide complexes to induce T-cell responses. Moreover, the roles of the peptides in ligand recognition are different for self- and allo-MHC-restricted T-cell responses. The self-MHC-restricted T-cell responses were finely tuned to recognition of the peptide. The allo-MHC-restricted responses, on the other hand, largely ignore modifications of the peptide. The results strongly suggest that adaptation of the T-cell receptor to the different ligand structures, rather than molecular mimicry by the ligands, is the basis for the crossreactivity of 2C. This conclusion has important implications for T-cell immunology and for the understanding of immunological disorders.
Resumo:
Although odorants are known to activate olfactory receptor neurons through cAMP, the long-term effects of odorant detection are not known. Our recent findings indicate that there is also a delayed and sustained cAMP response, with kinetics sufficient to mediate long-term cellular responses. This cAMP response is mediated by cGMP through activation of adenylyl cyclase by protein kinase G (PKG). Therefore, we investigated the ability of odorants to regulate gene expression in rat olfactory epithelium. The cAMP-responsive binding protein (CREB) is a well-characterized transcription factor regulated by cAMP. We examined CREB activity in rat olfactory epithelium and olfactory receptor neurons (ORNs) after stimulation with odorants. Odorants increased levels of phosphorylated CREB in olfactory epithelium in vivo, and this increase was localized to ORNs in vitro. Incubation with 8-bromo-cGMP or sodium nitroprusside, a guanylyl cyclase activator, also increased phosphorylated CREB. In vitro, cAMP-dependent protein kinase phosphorylated CREB. In contrast, PKG failed to phosphorylate CREB directly in vitro. Our results demonstrate that the delayed odorant-induced cAMP signal activates CREB, which in turn may modulate gene expression in ORNs. In addition, cGMP indirectly affects CREB activation. This effect of cGMP on CREB activity through cAMP provides another mechanism for the modulation of CREB.