155 resultados para Protein Kinases
Resumo:
The Fc gamma receptor-associated gamma and zeta subunits contain a conserved cytoplasmic motif, termed the immunoglobulin gene tyrosine activation motif, which contains a pair of YXXL sequences. The tyrosine residues within these YXXL sequences have been shown to be required for transduction of a phagocytic signal. We have previously reported that the gamma subunit of the type IIIA Fc gamma receptor (Fc gamma RIIIA) is approximately 6 times more efficient in mediating phagocytosis than the zeta subunit of Fc gamma RIIIA. By exchanging regions of the cytoplasmic domains of the homologous gamma and zeta chains, we observed that the cytoplasmic area of the gamma chain bearing a pair of the conserved YXXL sequences is important in phagocytic signaling. Further specificity of phagocytic signaling is largely determined by the two internal XX amino acids in the YXXL sequences. In contrast, the flanking amino acids of the YXXL sequences including the seven intervening amino acids between the two YXXL sequences do not significantly affect the phagocytic signal. Furthermore, the protein-tyrosine kinase Syk, but not the related kinase ZAP-70, stimulated Fc gamma RIIIA-mediated phagocytosis. ZAP-70, however, increased phagocytosis when coexpressed with the Src family kinase Fyn. These data demonstrate the importance of the two specific amino acids within the gamma subunit YXXL cytoplasmic sequences in phagocytic signaling and explain the difference in phagocytic efficiency of the gamma and zeta chains. These results indicate the importance of Syk in Fc gamma RIIIA-mediated phagocytosis and demonstrate that ZAP-70 and syk differ in their requirement for a Src-related kinase in signal transduction.
Resumo:
Tyrosine phosphorylation of a 17-amino acid immunoreceptor tyrosine-based activation motif (ITAM), conserved in each of the signaling subunits of the T-cell antigen receptor (TCR), mediates the recruitment of ZAP-70 and syk protein-tyrosine kinases (PTKs) to the activated receptor. The interaction between the two tandemly arranged Src-homology 2 (SH2) domains of this family of PTKs and each of the phosphotyrosine-containing ITAMs was examined by real-time measurements of kinetic parameters. The association rate and equilibrium binding constants for the ZAP-70 and syk SH2 domains were determined for the CD3 epsilon ITAM. Both PTKs bound with ka and Kd values of 5 x 10(6) M-1.sec-1 and approximately 25 nM, respectively. Bindings to the other TCR ITAMs (zeta 1, zeta 2, gamma, and delta ITAMs) were comparable, although the zeta 3 ITAM bound approximately 2.5-fold less well. Studies of the affinity of a single functional SH2 domain of ZAP-70 provided evidence for the cooperative nature of binding of the dual SH2 domains. Mutation of either single SH2 domain decreased the Kd by > 100-fold. Finally, the critical features of the ITAM for syk binding were found to be similar to those required for ZAP-70 binding. These data provide insight into the mechanism by which the multisubunit TCR interacts with downstream effector molecules.
Resumo:
The p38 mitogen-activated protein kinase is activated by treatment of cells with cytokines and by exposure to environmental stress. The effects of these stimuli on p38 MAP kinase are mediated by the MAP kinase kinases (MKKs) MKK3, MKK4, and MKK6. We have examined the function of the p38 MAP kinase signaling pathway by investigating the effect of targeted disruption of the Mkk3 gene. Here we report that Mkk3 gene disruption caused a selective defect in the response of fibroblasts to the proinflammatory cytokine tumor necrosis factor, including reduced p38 MAP kinase activation and cytokine expression. These data demonstrate that the MKK3 protein kinase is a critical component of a tumor necrosis factor-stimulated signaling pathway that causes increased expression of inflammatory cytokines.
Resumo:
In addition to DNA polymerase complexes, DNA replication requires the coordinate action of a series of proteins, including regulators Cdc28/Clb and Dbf4/Cdc7 kinases, Orcs, Mcms, Cdc6, Cdc45, and Dpb11. Of these, Dpb11, an essential BRCT repeat protein, has remained particularly enigmatic. The Schizosaccharomyces pombe homolog of DPB11, cut5, has been implicated in the DNA replication checkpoint as has the POL2 gene with which DPB11 genetically interacts. Here we describe a gene, DRC1, isolated as a dosage suppressor of dpb11–1. DRC1 is an essential cell cycle-regulated gene required for DNA replication. We show that both Dpb11 and Drc1 are required for the S-phase checkpoint, including the proper activation of the Rad53 kinase in response to DNA damage and replication blocks. Dpb11 is the second BRCT-repeat protein shown to control Rad53 function, possibly indicating a general function for this class of proteins. DRC1 and DPB11 show synthetic lethality and reciprocal dosage suppression. The Drc1 and Dpb11 proteins physically associate and function together to coordinate DNA replication and the cell cycle.
Resumo:
Activation of the transcription factor nuclear factor kappa B (NF-κB) is controlled by proteolysis of its inhibitory subunit (IκB) via the ubiquitin-proteasome pathway. Signal-induced phosphorylation of IκBα by a large multisubunit complex containing IκB kinases is a prerequisite for ubiquitination. Here, we show that FWD1 (a mouse homologue of Slimb/βTrCP), a member of the F-box/WD40-repeat proteins, is associated specifically with IκBα only when IκBα is phosphorylated. The introduction of FWD1 into cells significantly promotes ubiquitination and degradation of IκBα in concert with IκB kinases, resulting in nuclear translocation of NF-κB. In addition, FWD1 strikingly evoked the ubiquitination of IκBα in the in vitro system. In contrast, a dominant-negative form of FWD1 inhibits the ubiquitination, leading to stabilization of IκBα. These results suggest that the substrate-specific degradation of IκBα is mediated by a Skp1/Cull 1/F-box protein (SCF) FWD1 ubiquitin-ligase complex and that FWD1 serves as an intracellular receptor for phosphorylated IκBα. Skp1/Cullin/F-box protein FWD1 might play a critical role in transcriptional regulation of NF-κB through control of IκB protein stability.
Resumo:
In prokaryotes, in the absence of protein serine/threonine/tyrosine kinases, protein histidine kinases play a major role in signal transduction involved in cellular adaptation to various environmental changes and stresses. Histidine kinases phosphorylate their cognate response regulators at a specific aspartic acid residue with ATP in response to particular environmental signals. In this His-Asp phosphorelay signal transduction system, it is still unknown how the histidine kinase exerts its enzymatic function. Here we demonstrate that the cytoplasmic kinase domain of EnvZ, a transmembrane osmosensor of Escherichia coli can be further divided into two distinct functional subdomains: subdomain A [EnvZ(C)⋅(223–289); 67 residues] and subdomain B [EnvZ(C)⋅(290–450); 161 residues]. Subdomain A, with a high helical content, contains the autophosphorylation site, H–243, and forms a stable dimer having the recognition site for OmpR, the cognate response regulator of EnvZ. Subdomain B, an α/β-protein, exists as a monomer. When mixed, the two subdomains reconstitute the kinase function to phosphorylate subdomain A at His-243 in the presence of ATP. Subsequently, the phosphorylated subdomain A is able to transfer its phosphate group to OmpR. The two-domain structure of this histidine kinase provides an insight into the structural arrangement of the enzyme and its transphosphorylation mechanism.
Resumo:
The activation of cyclin-dependent kinases (cdks) has been implicated in apoptosis induced by various stimuli. We find that the Fas-induced activation of cdc2 and cdk2 in Jurkat cells is not dependent on protein synthesis, which is shut down very early during apoptosis before caspase-3 activation. Instead, activation of these kinases seems to result from both a rapid cleavage of Wee1 (an inhibitory kinase of cdc2 and cdk2) and inactivation of anaphase-promoting complex (the specific system for cyclin degradation), in which CDC27 homolog is cleaved during apoptosis. Both Wee1 and CDC27 are shown to be substrates of the caspase-3-like protease. Although cdk activities are elevated during Fas-induced apoptosis in Jurkat cells, general activation of the mitotic processes does not occur. Our results do not support the idea that apoptosis is simply an aberrant mitosis but, instead, suggest that a subset of mitotic mechanisms plays an important role in apoptosis through elevated cdk activities.
Resumo:
SEK1 (MKK4/JNKK) is a mitogen-activated protein kinase activator that has been shown to participate in vitro in two stress-activated cascades terminating with the SAPK and p38 kinases. To define the role of SEK1 in vivo, we studied stress-induced signaling in SEK1−/− embryonic stem and fibroblast cells and evaluated the phenotype of SEK1−/− mouse embryos during development. Studies of SEK1−/− embryonic stem cells demonstrated defects in stimulated SAPK phosphorylation but not in the phosphorylation of p38 kinase. In contrast, SEK1−/− fibroblasts exhibited defects in both SAPK and p38 phosphorylation, demonstrating that crosstalk exists between the stress-activated cascades. Tumor necrosis factor α and interleukin 1 stimulation of both stress-activated cascades are severely affected in the SEK1−/− fibroblast cells. SEK1 deficiency leads to embryonic lethality after embryonic day 12.5 and is associated with abnormal liver development. This phenotype is similar to c-jun null mouse embryos and suggests that SEK1 is required for phosphorylation and activation of c-jun during the organo-genesis of the liver.
Resumo:
Signal transduction through the leukocyte integrins is required for the processes of firm adhesion, activation, and chemotaxis of neutrophils during inflammatory reactions. Neutrophils isolated from knockout mice that are deficient in the expression of p59/61hck (Hck) and p58c-fgr (Fgr), members of the Src-family of protein tyrosine kinases, have been shown to be defective in adhesion mediated activation. Cells from these animals have impaired induction of respiratory burst and granule secretion following plating on surfaces that crosslink β2 and β3 integrins. To determine if the defective function of hck−/−fgr−/− neutrophils observed in vitro also results in impaired inflammatory responses in vivo, we examined responses induced by lipopolysaccharide (LPS) injection in these animals. The hck−/−fgr−/− mice showed marked resistance to the lethal effects of high-dose LPS injection despite the fact that high levels of serum tumor necrosis factor α and interleukin 1α were detected. Serum chemistry analysis revealed a marked reduction in liver and renal damage in mutant mice treated with LPS, whereas blood counts showed a marked neutrophilia that was not seen in wild-type animals. Direct examination of liver sections from mutant mice revealed reduced neutrophil migration into the tissue. These data demonstrate that defective integrin signaling in neutrophils, caused by loss of Hck and Fgr tyrosine kinase activity, results in impaired inflammation-dependent tissue injury in vivo.
Resumo:
The electrosensory lateral line lobe (ELL) of the electric fish Apteronotus leptorhynchus is a layered medullary region receiving electroreceptor input that terminates on basal dendrites of interneurons and projection (pyramidal) cells. The molecular layer of the ELL contains two distinct glutamatergic feedback pathways that terminate on the proximal (ventral molecular layer, VML) and distal (dorsal molecular layer) apical dendrites of pyramidal cells. Western blot analysis with an antibody directed against mammalian Ca2+/calmodulin-dependent kinase 2, α subunit (CaMK2α) recognized a protein of identical size in the brain of A. leptorhynchus. Immunohistochemistry demonstrated that CaMK2 α expression in the ELL was restricted to fibers and terminals in the VML. Posttetanic potentiation (PTP) could be readily elicited in pyramidal cells by stimulation of either VML or DML in brain slices of the ELL. PTP in the VML was blocked by extracellular application of a CaMK2 antagonist (KN62) while intracellular application of KN62 or a CaMK2 inhibitory peptide had no effect, consistent with the presynaptic localization of CaMK2 α in VML. PTP in the dorsal molecular layer was not affected by extracellular application of KN62. Anti-Hebbian plasticity has also been demonstrated in the VML, but was not affected by KN62. These results demonstrate that, while PTP can occur independent of CaMK2, it is, in some synapses, dependent on this kinase.
Resumo:
We describe the identification of Neuregulin-3 (NRG3), a novel protein that is structurally related to the neuregulins (NRG1). The NRG1/neuregulins are a diverse family of proteins that arise by alternative splicing from a single gene. These proteins play an important role in controlling the growth and differentiation of glial, epithelial, and muscle cells. The biological effects of NRG1 are mediated by receptor tyrosine kinases ErbB2, ErbB3, and ErbB4. However, genetic studies have suggested that the activity of ErbB4 may also be regulated in the central nervous system by a ligand distinct from NRG1. NRG3 is predicted to contain an extracellular domain with an epidermal growth factor (EGF) motif, a transmembrane domain, and a large cytoplasmic domain. We show that the EGF-like domain of NRG3 binds to the extracellular domain of ErbB4 in vitro. Moreover, NRG3 binds to ErbB4 expressed on cells and stimulates tyrosine phosphorylation of this receptor. The expression of NRG3 is highly restricted to the developing and adult nervous system. These data suggest that NRG3 is a novel, neural-enriched ligand for ErbB4.
Resumo:
The adeno-associated virus 2 (AAV), a single-stranded DNA-containing, nonpathogenic human parvovirus, has gained attention as a potentially useful vector for human gene therapy. However, the single-stranded nature of the viral genome significantly impacts upon the transduction efficiency, because the second-strand viral DNA synthesis is the rate-limiting step. We hypothesized that a host-cell protein interacts with the single-stranded D sequence within the inverted terminal repeat structure of the AAV genome and prevents the viral second-strand DNA synthesis. Indeed, a cellular protein has been identified that interacts specifically and preferentially with the D sequence at the 3′ end of the AAV genome. This protein, designated the single-stranded D-sequence-binding protein (ssD-BP), is phosphorylated at tyrosine residues and blocks AAV-mediated transgene expression in infected cells by inhibiting the leading strand viral DNA synthesis. Inhibition of cellular protein tyrosine kinases by genistein results in dephosphorylation of the ssD-BP, leading not only to significant augmentation of transgene expression from recombinant AAV but also to autonomous replication of the wild-type AAV genome. Dephosphorylation of the ssD-BP also correlates with adenovirus infection, or expression of the adenovirus E4orf6 protein, which is known to induce AAV DNA replication and gene expression. Thus, phosphorylation state of the ssD-BP appears to play a crucial role in the life cycle of AAV and may prove to be an important determinant in the successful use of AAV-based vectors in human gene therapy.
Resumo:
Cytokine-inducible protein SSI-1 [signal transducers and activators of transcription (STAT)-induced STAT inhibitor 1, also referred to as SOCS-1 (suppressor of cytokine signaling 1) or JAB (Janus kinase-binding protein)] negatively regulates cytokine receptor signaling by inhibition of JAK kinases. The SSI family of proteins includes eight members that are structurally characterized by an SH2 domain and a C-terminal conserved region that we have called the SC-motif. In this study, we investigated the roles of these domains in the function of SSI-1. Results of reporter assays demonstrated that the pre-SH2 domain (24 aa in front of the SH2 domain) and the SH2 domain of SSI-1 were required for the suppression by SSI-1 of interleukin 6 signaling. Coexpression studies of COS7 cells revealed that these domains also were required for inhibition of three JAKs (JAK1, JAK2, and TYK2). Furthermore, deletion of the SH2 domain, but not the pre-SH2 domain, resulted in loss of association of SSI-1 with TYK2. Thus, SSI-1 associates with JAK family kinase via its SH2 domain, and the pre-SH2 domain is required for the function of SSI-1. Deletion of the SC-motif markedly reduced expression of SSI-1 protein in M1 cells, and this reduction was reversed by treatment with proteasome inhibitors, suggesting that this motif is required to protect the SSI-1 molecule from proteolytic degradation. Based on these findings, we concluded that three distinct domains of SSI-1 (the pre-SH2 domain, the SH2 domain, and the SC-motif) cooperate in the suppression of interleukin 6 signaling.
Resumo:
Phosphatidylinositol 3-kinases (PI 3-kinases) have been implicated in membrane trafficking in the secretory and endocytic pathways of yeast and mammalian cells, but the molecular mechanisms by which these lipid kinases operate are not known. Here we identify a protein of 170 kDa that is rapidly released from cell membranes in response to wortmannin, a potent inhibitor of mammalian PI 3-kinases. The amino acid sequence of peptides from p170 reveal its identity to early endosomal antigen (EEA) 1, an endosomal antigen with homology to several yeast proteins genetically implicated in membrane trafficking. Immunofluorescence analysis of 3T3-L1 adipocytes with antisera against p170/EEA1 reveal a punctate peripheral pattern that becomes diffuse in response to wortmannin. In vitro, p170/EEA1 binds specifically to liposomes containing PIns(3)P, suggesting that the effect of wortmannin on cells is due to inhibition of PIns(3)P production. Thus, p170/EEA1 may define a family of proteins that mediate the regulatory effects of 3′-phosphoinositides on membrane trafficking in yeast and mammalian cells.
Resumo:
The c-Jun NH2-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases is activated by phosphorylation on Thr and Tyr. Here we report the molecular cloning of a new member of the mammalian MAP kinase kinase group (MKK7) that functions as an activator of JNK. In vitro protein kinase assays demonstrate that MKK7 phosphorylates and activates JNK, but not the p38 or extracellular signal-regulated kinase groups of MAP kinase. Expression of MKK7 in cultured cells causes activation of the JNK signal transduction pathway. MKK7 is therefore established to be a novel component of the JNK signal transduction pathway.