99 resultados para PROTEASES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent demonstration of the occurrence in rat brain and other nonpancreatic tissues of carboxypeptidase A (CPA) gene transcripts without associated catalytic activity could be ascribed to the presence of a soluble endogenous protein inhibitor. This tissue carboxypeptidase inhibitor (TCI), detected by the inhibition of added bovine pancreatic CPA, was purified from rat brain. Peptides were obtained by partial proteolysis of purified TCI, a protein of approximately 30 kDa, and starting from their sequences, a full-length cDNA encoding a 223-amino acid protein containing three potential phosphorylation sites was cloned from a cDNA library. Its identity with TCI was shown by expression in Escherichia coli of a recombinant protein recognized by antibodies raised against native TCI and display characteristic CPA-inhibiting activity. TCI appears as a hardly reversible, non-competitive, and potent inhibitor of CPA1 and CPA2 (Ki approximately 3 nM) and mast-cell CPA (Ki = 16 nM) and inactive on various other proteases. This pattern of selectivity might be attributable to a limited homology of a 11-amino acid sequence with sequences within the activation segments of CPA and CPB known to interact with residues within their active sites. The widespread expression of TCI in a number of tissues (e.g., brain, lung, or digestive tract) and its apparently cytosolic localization point to a rather general functional role, e.g., in the control of cytosolic protein degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several lines of indirect evidence suggest that plasminogen activation plays a crucial role in degradation of the follicular wall during ovulation. However, single-deficient mice lacking tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), or PA inhibitor type 1(PAI-1) gene function were recently found to have normal reproduction, although mice with a combined deficiency of tPA and uPA were significantly less fertile. To investigate whether the reduced fertility of mice lacking PA gene function is due to a reduced ovulation mechanism, we have determined the ovulation efficiency in 25-day-old mice during gonadotropin-induced ovulation. Our results reveal that ovulation efficiency is normal in mice with a single deficiency of tPA or uPA but reduced by 26% in mice lacking both physiological PAs. This result suggests that plasminogen activation plays a role in ovulatory response, although neither tPA nor uPA individually or in combination is obligatory for ovulation. The loss of an individual PA seems to be functionally complemented by the remaining PA but this compensation does not appear to involve any compensatory up-regulation. Our data imply that a functionally redundant mechanism for plasmin formation operates during gonadotropin-induced ovulation and that PAs together with other proteases generate the proteolytic activity required for follicular wall degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

VanX is a D-Ala-D-Ala dipeptidase that is essential for vancomycin resistance in Enterococcus faecium. Contrary to most proteases and peptidases, it prefers to hydrolyze the amino substrate but not the related kinetically and thermodynamically more favorable ester substrate D-Ala-D-lactate. The enzymatic activity of VanX was previously found to be inhibited by the phosphinate analogs of the proposed tetrahedral intermediate for hydrolysis of D-Ala-D-Ala. Here we report that such phosphinates are slow-binding inhibitors. D-3-[(1-Aminoethyl)phosphinyl]-D-2-methylpropionic acid I showed a time-dependent onset of inhibition of VanX and a time-dependent return to uninhibited steady-state rates upon dilution of the enzyme/inhibitor mixture. The initial inhibition constant Ki after immediate addition of VanX to phosphinate I to form the E-I complex is 1.5 microM but is then lowered by a relatively slow isomerization step to a second complex, E-I*, with a final K*i of 0.47 microM. This slow-binding inhibition reflects a Km/K*i ratio of 2900:1. The rate constant for the slow dissociation of complex E-I* is 0.24 min-1. A phosphinate analog with an ethyl group replacing what would be the side chain of the second D-alanyl residue in the normal tetrahedral adduct gives a K*i value of 90 nM. Partial proteolysis of VanX reveals two protease-sensitive loop regions that are protected by the intermediate analog phosphinate, indicating that they may be part of the VanX active site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Production of infectious human immunodeficiency virus (HIV) requires proper polyprotein processing by the dimeric viral protease. The trans-dominant inhibitory activity of a defective protease monomer with the active site Asp-25 changed to Asn was measured by transient transfection. A proviral plasmid that included the drug-selectable Escherichia coli gpt gene was used to deliver the wild-type (wt) or mutant proteases to cultured cells. Coexpression of the wt proviral DNA (HIV-gpt) with increasing amounts of the mutant proviral DNA (HIV-gpt D25N) results in a concomitant decrease in proteolytic activity monitored by in vivo viral polyprotein processing. The viral particles resulting from inactivation of the protease were mostly immature, consisting predominantly of unprocessed p55gag and p160gag-pol polyproteins. In the presence of HIV-1 gp160 env, the number of secreted noninfectious particles correlated with the presence of increasing amounts of the defective protease. Greater than 97% reduction in infectivity was observed at a 1:6 ratio of wt to defective protease DNA. This provides an estimate of the level of inhibition required for effectively preventing virion processing. Stable expression of the defective protease in monkey cells reduced the yield of infectious particles from these cells by 90% upon transfection with the wt proviral DNA. These results show that defective subunits of the viral protease exert a trans-dominant inhibitory effect resulting from the formation of catalytically compromised heterodimers in vivo, ultimately yielding noninfectious viral particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear-encoded proteins targeted to the chloroplast are typically synthesized with N-terminal transit peptides which are proteolytically removed upon import. Structurally related proteins of 145 and 143 kDa copurify with a soluble chloroplast processing enzyme (CPE) that cleaves the precursor for the major light-harvesting chlorophyll a/b binding protein and have been implicated in the maturation of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and acyl carrier protein. The 145- and 143-kDa proteins have not been found as a heterodimer and thus may represent functionally independent isoforms encoded by separate genes. Here we describe the primary structure of a 140-kDa polypeptide encoded by cDNAs isolated by using antibodies raised against the 145/143-kDa doublet. The 140-kDa polypeptide contains a transit peptide, and strikingly, a His-Xaa-Xaa-Glu-His zinc-binding motif that is conserved in a recently recognized family of metalloendopeptidases, which includes Escherichia coli protease III, insulin-degrading enzyme, and subunit beta of the mitochondrial processing peptidase. Identity of 25-30%, concentrated near the N terminus of the 140-kDa polypeptide, is found with these proteases. Expression of CPE in leaves is not light dependent. Indeed, transcripts are present in dark-grown plants, and the 145/143-kDa doublet and proteolytic activity are both found in etioplasts, as well as in root plastids. Thus, CPE appears to be a necessary component of the import machinery in photosynthetic and nonphotosynthetic tissues, and it may function as a general stromal processing peptidase in plastids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have synthesized two sets of noncleavable peptide-inhibitor libraries to map the S and S' subsites of human heart chymase. Human heart chymase is a chymotrypsin-like enzyme that converts angiotensin I to angiotensin II. The first library consists of peptides with 3-fluorobenzylpyruvamides in the P1 position. (Amino acid residues of substrates numbered P1, P2, etc., are toward the N-terminal direction, and P'1, P'2, etc., are toward the C-terminal direction from the scissile bond.) The P'1 and P'2 positions were varied to contain each one of the 20 naturally occurring amino acids and P'3 was kept constant as an arginine. The second library consists of peptides with phenylalanine keto-amides at P1, glycine in P'1, and benzyloxycarbonyl (Z)-isoleucine in P4. The P2 and P3 positions were varied to contain each of the naturally occurring amino acids, except for cysteine and methionine. The peptides of both libraries are attached to a solid support (pins). The peptides are evaluated by immersing the pins in a solution of the target enzyme and evaluating the amount of enzyme absorbed. The pins with the best inhibitors will absorb most enzyme. The libraries select the best and worst inhibitors within each group of peptides and provide an approximate ranking of the remaining peptides according to Ki. Through this library, we determined that Z-Ile-Glu-Pro-Phe-CO2Me and (F)-Phe-CO-Glu-Asp-ArgOMe should be the best inhibitors of chymase in this collection of peptide inhibitors. We synthesized the peptides and found Ki values were 1 nM and 1 microM, respectively. The corresponding Ki values for chymotrypsin were 10 nM and 100 microM. The use of libraries of inhibitors has advantages over the classical method of synthesis of potential inhibitors in solution: the libraries are reusable, the same libraries can be used with a variety of different serine proteases, and the method allows the screening of hundreds of compounds in short periods of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thrombin is an allosteric enzyme existing in two forms, slow and fast, that differ widely in their specificities toward synthetic and natural amide substrates. The two forms are significantly populated in vivo, and the allosteric equilibrium can be affected by the binding of effectors and natural substrates. The fast form is procoagulant because it cleaves fibrinogen with higher specificity; the slow form is anticoagulant because it cleaves protein C with higher specificity. Binding of thrombomodulin inhibits cleavage of fibrinogen by the fast form and promotes cleavage of protein C by the slow form. The allosteric properties of thrombin, which has targeted two distinct conformational states toward its two fundamental and competing roles in hemostasis, are paradigmatic of a molecular strategy that is likely to be exploited by other proteases in the blood coagulation cascade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcriptional stimulation by the model activator GAL4-VP16 (a chimeric protein consisting of the DNA-binding domain of the yeast activator GAL4 and the acidic activation domain of the herpes simplex virus protein VP16) involves a series of poorly understood protein-protein interactions between the VP16 activation domain and components of the RNA polymerase II general transcription machinery. One of these interactions is the VP16-mediated binding and recruitment of transcription factor TFIIB. However, TATA box-binding protein (TBP)-associated factors (TAFs), or coactivators, are required for this interaction to culminate in productive transcription complex assembly, and one such TAF, Drosophila TAF40, reportedly forms a ternary complex with VP16 and TFIIB. Due to TFIIB's central role in gene activation, we sought to directly visualize the surfaces of this protein that mediate formation of the ternary complex. We developed an approach called protease footprinting in which the broad-specificity proteases chymotrypsin and alkaline protease were used to probe binding of 32P-end-labeled TFIIB to GAL4-VP16 or TAF40. Analysis of the cleavage products revealed two regions of TFIIB protected by VP16 from protease attack, one of which overlapped with a region protected by TAF40. The close proximity of the VP16 and TAF40 binding sites on the surface of TFIIB suggests that this region could act as a regulatory interface mediating the effects of activators and coactivators on transcription complex assembly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prolonged incubation of NIH 3T3 cells under the growth constraint of confluence results in the death of some cells in a manner suggestive of apoptosis. Successive rounds of prolonged incubation at confluence of the surviving cells produce increasing neoplastic transformation in the form of increments in saturation density and transformed focus formation. Cells from the postconfluent cultures are given a recovery period of various lengths to remove the direct inhibitory effect of confluence before their growth properties are studied. It is found that with each round of confluence the exponential growth rate of the cells at low densities gets lower and the size of isolated colonies of the same cells shows a similar progressive reduction. The decreased growth rate of cells from the third round of confluence persists for > 60 generations of growth at low density. The proportion of colonies containing giant cells is much higher after a 2-day recovery from confluence than after a 7-day recovery. Retardation of growth at low density and increased saturation density appear to be two sides of the same coin: both occur in the entire population of cells and precede the formation of transformed foci. We propose that the slowdown in growth and the formation of giant cells result from heritable damage to the cells, which in turn drives their transformation. Similar results have been reported for the survivors of x-irradiation and of treatment with chemical carcinogens and are associated with the aging process in animals. We suggest that these changes result from free radical damage to membrane lipids with particular damage to lysosomes. Proteases and nucleases would then be released to progressively modify the growth behavior and genetic stability of the cells toward autonomous proliferation.