107 resultados para Navigational channels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abscisic acid (ABA) modulates the activities of three major classes of ion channels--inward- and outward-rectifying K+ channels (IK,in and IK,out, respectively) and anion channels--at the guard-cell plasma membrane to achieve a net efflux of osmotica and stomatal closure. Disruption of ABA sensitivity in wilty abi1-1 mutants of Arabidopsis and evidence that this gene encodes a protein phosphatase suggest that protein (de)-phosphorylation contributes to guard-cell transport control by ABA. To pinpoint the role of ABI1, the abi1-1 dominant mutant allele was stably transformed into Nicotiana benthamiana and its influence on IK,in, IK,out, and the anion channels was monitored in guard cells under voltage clamp. Compared with guard cells from wild-type and vector-transformed control plants, expression of the abi1-1 gene was associated with 2- to 6-fold reductions in IK,out and an insensitivity of both IK,in and IK,out to 20 microM ABA. In contrast, no differences between control and abi1-1 transgenic plants were observed in the anion current or its response to ABA. Parallel measurements of intracellular pH (pHi) using the fluorescent dye 2',7'-bis(2-carboxyethyl)-5-(and -6)-carboxyfluorescein (BCECF) in every case showed a 0.15- to 0.2-pH-unit alkalinization in ABA, demonstrating that the transgene was without effect on the pHi signal that mediates in ABA-evoked K+ channel control. In guard cells from the abi1-1 transformants, normal sensitivity of both K+ channels to and stomatal closure in ABA was recovered in the presence of 100 microM H7 and 0.5 microM staurosporine, both broad-range protein kinase antagonists. These results demonstrate an aberrant K+ channel behavior--including channel insensitivity to ABA-dependent alkalinization of pHi--as a major consequence of abi1-1 action and implicate AB11 as part of a phosphatase/kinase pathway that modulates the sensitivity of guard-cell K+ channels to ABA-evoked signal cascades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence suggests that slow anion channels in guard cells need to be activated to trigger stomatal closing and efficiently inactivated during stomatal opening. The patch-clamp technique was employed here to determine mechanisms that produce strong regulation of slow anion channels in guard cells. MgATP in guard cells, serving as a donor for phosphorylation, leads to strong activation of slow anion channels. Slow anion-channel activity was almost completely abolished by removal of cytosolic ATP or by the kinase inhibitors K-252a and H7. Nonhydrolyzable ATP, GTP, and guanosine 5'-[gamma-thio]triphosphate did not replace the ATP requirement for anion-channel activation. In addition, down-regulation of slow anion channels by ATP removal was inhibited by the phosphatase inhibitor okadaic acid. Stomatal closures in leaves induced by the plant hormone abscisic acid (ABA) and malate were abolished by kinase inhibitors and/or enhanced by okadaic acid. These data suggest that ABA signal transduction may proceed by activation of protein kinases and inhibition of an okadaic acid-sensitive phosphatase. This modulation of ABA-induced stomatal closing correlated to the large dynamic range for up- and down-regulation of slow anion channels by opposing phosphorylation and dephosphorylation events in guard cells. The presented opposing regulation by kinase and phosphatase modulators could provide important mechanisms for signal transduction by ABA and other stimuli during stomatal movements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Injection of min K mRNA into Xenopus oocytes results in expression of slowly activating voltage-dependent potassium channels, distinct from those induced by expression of other cloned potassium channels. The min K protein also differs in structure, containing only a single predicted transmembrane domain. While it has been demonstrated that all other cloned potassium channels form by association of four independent subunits, the number of min K monomers which constitute a functional channel is unknown. In rat min K, replacement of Ser-69 by Ala (S69A) causes a shift in the current-voltage (I-V) relationship to more depolarized potentials; currents are not observed at potentials negative to 0 mV. To determine the subunit stoichiometry of min K channels, wild-type and S69A subunits were coexpressed. Injections of a constant amount of wild-type mRNA with increasing amounts of S69A mRNA led to potassium currents of decreasing amplitude upon voltage commands to -20 mV. Applying a binomial distribution to the reduction of current amplitudes as a function of the different coinjection mixtures yielded a subunit stoichiometry of at least 14 monomers for each functional min K channel. A model is presented for how min K subunits may form a channel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gap junctions are plaque-like clusters of intercellular channels that mediate intercellular communication. Each of two adjoining cells contains a connexon unit which makes up half of the whole channel. Gap junction channels are formed from a multigene family of proteins called connexins, and different connexins may be coexpressed by a single cell type and found within the same plaque. Rodent gap junctions contain two proteins, connexins 32 and 26. Use of a scanning transmission electron microscope for mass analysis of rodent gap junction plaques and split gap junctions prvided evidence consistent with a model in which the channels may be made from (i) solely connexin 26, (ii) solely connexin 32, or (iii) mixtures of connexin 26 and connexin 32 in which the two connexons are made entirely of connexin 26 and connexin 32. The different types of channels segregate into distinct domains, implying tha connexon channels self-associate to give a non-random distribution within tissues. Since each connexin confers distinct physiological properties on its membrane channels, these results imply that the physiological properties of channels can be tailored by mixing the constituent proteins within these macromolecular structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A crude extract from ginseng root inhibits high-threshold, voltage-dependent Ca2+ channels through an unknown receptor linked to a pertussis toxin-sensitive G protein. We now have found the particular compound that seems responsible for the effect: it is a saponin, called ginsenoside Rf (Rf), that is present in only trace amounts within ginseng. At saturating concentrations, Rf rapidly and reversibly inhibits N-type, and other high-threshold, Ca2+ channels in rat sensory neurons to the same degree as a maximal dose of opioids. The effect is dose-dependent (half-maximal inhibition: 40 microM) and it is virtually eliminated by pretreatment of the neurons with pertussis toxin, an inhibitor of G(o) and Gi GTP-binding proteins. Other ginseng saponins--ginsenosides Rb1, Rc, Re, and Rg1--caused relatively little inhibition of Ca2+ channels, and lipophilic components of ginseng root had no effect. Antagonists of a variety of neurotransmitter receptors that inhibit Ca2+ channels fail to alter the effect of Rf, raising the possibility that Rf acts through another G protein-linked receptor. Rf also inhibits Ca2+ channels in the hybrid F-11 cell line, which might, therefore, be useful for molecular characterization of the putative receptor for Rf. Because it is not a peptide and it shares important cellular and molecular targets with opioids, Rf might be useful in itself or as a template for designing additional modulators of neuronal Ca2+ channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the cellular and molecular events associated with the increase in sodium transport across the alveolar epithelium of rats exposed to hyperoxia (85% O2 for 7 days followed by 100% O2 for 4 days). Alveolar type II (ATII) cell RNA was isolated and probed with a cDNA for one of the rat colonic epithelial sodium channel subunits (alpha rENaC). The alpha rENaC mRNA (3.7-kb transcript) increased 3-fold in ATII cell RNA isolated from rats exposed to 85% O2 for 7 days and 6-fold after 4 days of subsequent exposure to 100% O2. In situ hybridization revealed increased expression of alpha rENaC mRNA transcripts in both airway and alveolar epithelial cells of hyperoxic rats. When immunostained with a polyclonal antibody to kidney sodium channel protein, ATII cells from hyperoxic rats exhibited a significant increase in the amount of immunogenic protein present in both the plasma membrane and the cytoplasm. When patched in the whole-cell mode, ATII cells from hyperoxic rats exhibited amiloride and 5-(N-ethyl-N-isopropyl)-2',4'-amiloride (EIPA)-sensitive currents that were 100% higher compared with those obtained from air-breathing rats. Single-channel sodium currents (mean conductance of 25 pS) were seen in ATII cells patched in both the inside-out and cell-attached modes. The number and open probability of these channels increased significantly during exposure to hyperoxia. Exposure to sublethal hyperoxia up-regulated both alpha rENaC mRNA and the functional expression of sodium channels in ATII cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effect of cell shrinkage on whole-cell currents of M-1 mouse cortical collecting duct cells. Addition of 100 mM sucrose to an isotonic NaCl bath solution induced cell shrinkage and increased whole-cell currents within 5-10 min by approximately 12-fold. The effect was reversible upon return to isotonic solution and could also be elicited by adding 100 mM urea or 50 mM NaCl. Replacement of bath Na+ by K+, Cs+, Li+, or Rb+ did not significantly affect the stimulated inward current, but replacement by N-methyl-D-glucamine reduced it by 88.1 +/- 1.3% (n = 34); this demonstrates that hypertonicity activates a nonselective alkali cation conductance. The activation was independent of extra- and intracellular Ca2+, but 1 or 10 mM ATP in the pipette suppressed it in a concentration-dependent manner, indicating that intracellular ATP levels may modulate the degree of channel activation. Flufenamic acid (0.1 mM) and gadolinium (0.1 mM) inhibited the stimulated current by 68.7 +/- 5.9% (n = 9) and 32.4 +/- 11.7% (n = 6), respectively, whereas 0.1 mM amiloride had no significant effect. During the early phase of hypertonic stimulation single-channel transitions could be detected in whole-cell current recordings, and a gradual activation of 30 and more individual channels with a single-channel conductance of 26.7 +/- 0.4 pS (n = 29) could be resolved. Thus, we identified the nonselective cation channel underlying the shrinkage-induced whole-cell conductance that may play a role in volume regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aquaporins (AQPs) are a family of homologous water-channel proteins that can be inserted into epithelial cell plasma membranes either constitutively (AQP1) or by regulated exocytosis following vasopressin stimulation (AQP2). LLC-PK1 porcine renal epithelial cells were stably transfected with cDNA encoding AQP2 (tagged with a C-terminal c-Myc epitope) or rat kidney AQP1 cDNA in an expression vector containing a cytomegalovirus promoter. Immunofluorescence staining revealed that AQP1 was mainly localized to the plasma membrane, whereas AQP2 was predominantly located on intracellular vesicles. After treatment with vasopressin or forskolin for 10 min, AQP2 was relocated to the plasma membrane, indicating that this relocation was induced by cAMP. The location of AQP1 did not change. The basal water permeability of AQP1-transfected cells was 2-fold greater than that of nontransfected cells, whereas the permeability of AQP2-transfected cells increased significantly only after vasopressin treatment. Endocytotic uptake of fluorescein isothiocyanate-coupled dextran was stimulated 6-fold by vasopressin in AQP2-transfected cells but was only slightly increased in wild-type or AQP1-transfected cells. This vasopressin-induced endocytosis was inhibited in low-K+ medium, which selectively affects clathrin-mediated endocytosis. These water channel-transfected cells represent an in vitro system that will allow the detailed dissection of mechanisms involved in the processing, targeting, and trafficking of proteins via constitutive versus regulated intracellular transport pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic nucleotide-gated (CNG) cation channels contain two short sequence motifs--a residual voltage-sensor (S4) and a pore-forming (P) segment--that are reminiscent of similar segments in voltage-activated Shaker-type K+ channels. It has been tacitly assumed that CNG channels and this K+ channel subfamily share a common overall topology, characterized by a hydrophobic domain comprising six membrane-spanning segments. We have systematically investigated the topology of CNG channels from bovine rod photoreceptor and Drosophila melanogaster by a gene fusion approach using the bacterial reporter enzymes alkaline phosphatase and beta-galactosidase, which are active only in the periplasm and only in the cytoplasm, respectively. Enzymatic activity was determined after expression of fusion constructs in Escherichia coli. CNG channels were found to have six membrane-spanning segments, suggesting that CNG and Shaker-type K+ channels, albeit distant relatives within a gene superfamily of ion channels, share a common topology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have cloned two inwardly rectifying K+ channels that occur selectively in neurons in the brain and are designated BIRK (brain inwardly rectifying K+) channels. BIRK1 mRNA is extremely abundant and is enriched in specific brainstem nuclei, BIRK1 displays a consensus phosphate-binding loop, and expression in Xenopus oocytes has shown that its conductance is inhibited by ATP and adenosine 5'-[gamma-thio]triphosphate. BIRK2 is far less abundant and is selectively localized in telencephalic neurons. BIRK2 has a consensus sequence for cAMP-dependent phosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

K+ channels, which have been linked to regulation of electrogenic solute transport as well as Ca2+ influx, represent a locus in hepatocytes for the concerted actions of hormones that employ Ca2+ and cAMP as intracellular messengers. Despite considerable study, the single-channel basis for synergistic effects of Ca2+ and cAMP on hepatocellular K+ conductance is not well understood. To address this question, patch-clamp recording techniques were applied to a model liver cell line, HTC hepatoma cells. Increasing the cytosolic Ca2+ concentration ([Ca2+]i) in HTC cells, either by activation of purinergic receptors with ATP or by inhibition of intracellular Ca2+ sequestration with thapsigargin, activated low-conductance (9-pS) K+ channels. Studies with excised membrane patches suggested that these channels were directly activated by Ca2+. Exposure of HTC cells to a permeant cAMP analog, 8-(4-chlorophenylthio)-cAMP, also activated 9-pS K+ channels but did not change [Ca2+]i. In excised membrane patches, cAMP-dependent protein kinase (the downstream effector of cAMP) activated K+ channels with conductance and selectivity identical to those of channels activated by Ca2+. In addition, cAMP-dependent protein kinase activated a distinct K+ channel type (5 pS). These data represent the differential regulation of low-conductance K+ channels by signaling pathways mediated by Ca2+ and cAMP. Moreover, since low-conductance Ca(2+)-activated K+ channels have been identified in a variety of cell types, these findings suggest that differential regulation of K+ channels by hormones with distinct signaling pathways may provide a mechanism for hormonal control of solute transport and Ca(2+)-dependent cellular functions in the liver as well as other nonexcitable tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal neurons maintained in primary culture recycle synaptic vesicles and express functional glutamate receptors since early stages of neuronal development. By analyzing glutamate-induced cytosolic calcium changes to sense presynaptically released neurotransmitter, we demonstrate that the ability of neurons to release glutamate in the extracellular space is temporally coincident with the property of synaptic vesicles to undergo exocytotic-endocytotic recycling. Neuronal differentiation and maturation of synaptic contacts coincide with a change in the subtype of calcium channels primarily involved in controlling neurosecretion. Whereas omega-agatoxin IVA-sensitive channels play a role in controlling neurotransmitter secretion at all stages of neuronal differentiation, omega-conotoxin GVIA-sensitive channels are primarily involved in mediating glutamate release at early developmental stages only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guanine nucleotide-binding proteins (G proteins) activate K+ conductances in cardiac atrial cells to slow heart rate and in neurons to decrease excitability. cDNAs encoding three isoforms of a G-protein-coupled, inwardly rectifying K+ channel (GIRK) have recently been cloned from cardiac (GIRK1/Kir 3.1) and brain cDNA libraries (GIRK2/Kir 3.2 and GIRK3/Kir 3.3). Here we report that GIRK2 but not GIRK3 can be activated by G protein subunits G beta 1 and G gamma 2 in Xenopus oocytes. Furthermore, when either GIRK3 or GIRK2 was coexpressed with GIRK1 and activated either by muscarinic receptors or by G beta gamma subunits, G-protein-mediated inward currents were increased by 5- to 40-fold. The single-channel conductance for GIRK1 plus GIRK2 coexpression was intermediate between those for GIRK1 alone and for GIRK2 alone, and voltage-jump kinetics for the coexpressed channels displayed new kinetic properties. On the other hand, coexpression of GIRK3 with GIRK2 suppressed the GIRK2 alone response. These studies suggest that formation of heteromultimers involving the several GIRKs is an important mechanism for generating diversity in expression level and function of neurotransmitter-coupled, inward rectifier K+ channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single channel recordings demonstrate that ion channels switch stochastically between an open and a closed pore conformation. In search of a structural explanation for this universal open/close behavior, we have uncovered a striking degree of amino acid homology across the pore-forming regions of voltage-gated K channels and glutamate receptors. This suggested that the pores of these otherwise unrelated classes of channels could be structurally conserved. Strong experimental evidence supports a hairpin structure for the pore-forming region of K channels. Consequently, we hypothesized the existence of a similar structure for the pore of glutamate receptors. In ligand-gated channels, the pore is formed by M2, the second of four putative transmembrane segments. A hairpin structure for M2 would affect the subsequent membrane topology, inverting the proposed orientation of the next segments, M3. We have tested this idea for the NR1 subunit of the N-methyl-D-aspartate receptor. Mutations that affected the glycosylation pattern of the NR1 subunit localize both extremes of the M3-M4 linker to the extracellular space. Whole cell currents and apparent agonist affinities were not affected by these mutations. Therefore it can be assumed that they represent the native transmembrane topology. The extracellular assignment of the M3-M4 linker challenged the current topology model by inverting M3. Taken together, the amino acid homology and the new topology suggest that the pore-forming M2 segment of glutamate receptors does not transverse the membrane but, rather, forms a hairpin structure, similar to that found in K channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method was developed to transplant assembled nicotinic acetylcholine receptors (AcChoRs) and Cl- channels from the electric organ of Torpedo to the membrane of Xenopus oocytes. Membrane vesicles from Torpedo electroplaques were injected into the oocytes and, within a few hours, the oocyte membrane acquired AcChoRs and Cl- channels. The mechanism of expression of these receptors and channels is very different from that which follows the injection of mRNA, since the appearance of receptors after membrane injection does not require de novo protein synthesis or N-glycosylation. This, and other controls, indicate that the foreign receptor-bearing membranes fuse with the oocyte membrane and cause the appearance of functional receptors and channels. All this makes the Xenopus oocyte an even more powerful tool for studies of the structure and function of membrane proteins.