160 resultados para MISSENSE MUTATIONS
Resumo:
Conditional gene repair mutations in the mouse can assist in cell lineage analyses and provide a valuable complement to conditional gene inactivation strategies. We present a method for the generation of conditional gene repair mutations that employs a loxP-flanked (floxed) selectable marker and transcriptional/translational stop cassette (neostop) located within the first intron of a target gene. In the absence of Cre recombinase, expression of the targeted allele is suppressed generating a null allele, while in the presence of Cre, excision of neostop restores expression to wild-type levels. To test this strategy, we have generated a conditional gene repair allele of the mouse Huntington’s disease gene homolog (Hdh). Insertion of neostop within the Hdh intron 1 generated a null allele and mice homozygous for this allele resembled nullizygous Hdh mutants and died after embryonic day 8.5. In the presence of a cre transgene expressed ubiquitously early in development, excision of neostop restored Hdh expression and rescued the early embryonic lethality. A simple modification of this strategy that permits the generation of conventional gene knockout, conditional gene knockout and conditional gene repair alleles using one targeting construct is discussed.
Resumo:
Bacterial artificial chromosomes (BACs) and P1 artificial chromosomes (PACs), which contain large fragments of genomic DNA, have been successfully used as transgenes to create mouse models of dose-dependent diseases. They are also potentially valuable as transgenes for dominant diseases given that point mutations and/or small rearrangements can be accurately introduced. Here, we describe a new method to introduce small alterations in BACs, which results in the generation of point mutations with high frequency. The method involves homologous recombination between the original BAC and a shuttle vector providing the mutation. Each recombination step is monitored using positive and negative selection markers, which are the Kanamycin-resistance gene, the sacB gene and temperature-sensitive replication, all conferred by the shuttle plasmid. We have used this method to introduce four different point mutations and the insertion of the β-galactosidase gene in a BAC, which has subsequently been used for transgenic animal production.
Resumo:
Here we study the effect of point mutations in proteins on the redistributions of the conformational substates. We show that regardless of the location of a mutation in the protein structure and of its type, the observed movements of the backbone recur largely at the same positions in the structures. Despite the different interactions that are disrupted and formed by the residue substitution, not only are the conformations very similar, but the regions that move are also the same, regardless of their sequential or spatial distance from the mutation. This observation leads us to conclude that, apart from some extreme cases, the details of the interactions are not critically important in determining the protein conformation or in specifying which parts of the protein would be more prone to take on different local conformations in response to changes in the sequence. This finding further illustrates why proteins manifest a robustness toward many mutational events. This nonuniform distribution of the conformer population is consistently observed in a variety of protein structural types. Topology is critically important in determining folding pathways, kinetics, building block cutting, and anatomy trees. Here we show that topology is also very important in determining which regions of the protein structure will respond to sequence changes, regardless of the sequential or spatial location of the mutation.
Resumo:
DPC4 is known to mediate signals initiated by type β transforming growth factor (TGFβ) as well as by other TGFβ superfamily ligands such as activin and BMP (bone morphogenic proteins), but mutational surveys of such non-TGFβ receptors have been negative to date. Here we describe the gene structure and novel somatic mutations of the activin type I receptor, ACVR1B, in pancreatic cancer. ACVR1B has not been described previously as a mutated tumor-suppressor gene.
Resumo:
IL-18 can be considered a proinflammatory cytokine mediating disease as well as an immunostimulatory cytokine that is important for host defense against infection and cancer. The high-affinity, constitutively expressed, and circulating IL-18 binding protein (IL-18BP), which competes with cell surface receptors for IL-18 and neutralizes IL-18 activity, may act as a natural antiinflammatory as well as immunosuppressive molecule. In the present studies, the IL-18 precursor caspase-1 cleavage site was changed to a factor Xa site, and, after expression in Escherichia coli, mature IL-18 was generated by factor Xa cleavage. Mature IL-18 generated by factor Xa cleavage was fully active. Single point mutations in the mature IL-18 peptide were made, and the biological activities of the wild-type (WT) IL-18 were compared with those of the mutants. Mutants E42A and K89A exhibited 2-fold increased activity compared with WT IL-18. A double mutant, E42A plus K89A, exhibited 4-fold greater activity. Unexpectedly, IL-18BP failed to neutralize the double mutant E42A plus K89A compared with WT IL-18. The K89A mutant was intermediate in being neutralized by IL-18BP, whereas neutralization of the E42A mutant was comparable to that in the WT IL-18. The identification of E42 and K89 in the mature IL-18 peptide is consistent with previous modeling studies of IL-18 binding to IL-18BP and explains the unusually high affinity of IL-18BP for IL-18.
Resumo:
Suppression of cardiac voltage-gated Na+ currents is probably one of the important factors for the cardioprotective effects of the n-3 polyunsaturated fatty acids (PUFAs) against lethal arrhythmias. The α subunit of the human cardiac Na+ channel (hH1α) and its mutants were expressed in human embryonic kidney (HEK293t) cells. The effects of single amino acid point mutations on fatty acid-induced inhibition of the hH1α Na+ current (INa) were assessed. Eicosapentaenoic acid (EPA, C20:5n-3) significantly reduced INa in HEK293t cells expressing the wild type, Y1767K, and F1760K of hH1α Na+ channels. The inhibition was voltage and concentration-dependent with a significant hyperpolarizing shift of the steady state of INa. In contrast, the mutant N406K was significantly less sensitive to the inhibitory effect of EPA. The values of the shift at 1, 5, and 10 μM EPA were significantly smaller for N406K than for the wild type. Coexpression of the β1 subunit and N406K further decreased the inhibitory effects of EPA on INa in HEK293t cells. In addition, EPA produced a smaller hyperpolarizing shift of the V1/2 of the steady-state inactivation in HEK293t cells coexpressing the β1 subunit and N406K. These results demonstrate that substitution of asparagine with lysine at the site of 406 in the domain-1-segment-6 region (D1-S6) significantly decreased the inhibitory effect of PUFAs on INa, and coexpression with β1 decreased this effect even more. Therefore, asparagine at the 406 site in hH1α may be important for the inhibition by the PUFAs of cardiac voltage-gated Na+ currents, which play a significant role in the antiarrhythmic actions of PUFAs.
Resumo:
In order to explore the possible role of E-cadherin in familial cancer, 19 familial breast cancer patients, whose tumours demonstrated loss of heterozygosity (LOH) at the E-cadherin locus, were screened for germline mutations. No pathogenic germline alterations were detected in these individuals. However, a somatic mutation was found (49-2A→C) in one of the tumours. This tumour showed a pattern of both ductal and lobular histology. Another 10 families with cases of breast, gastric and colon cancer were also screened for germline mutations, and no mutations were found. A missense mutation in exon 12 of E-cadherin (1774G→A; Ala592Thr) was previously found in one family with diffuse gastric cancer, and colon and breast cancer. An allelic association study was performed to determine whether the Ala592Thr alteration predisposes to breast cancer. In total, we studied 484 familial breast cancer patients, 614 sporadic breast cancer patients and 497 control individuals. The frequencies of this alteration were similar in these groups. However, a correlation between the Ala592Thr alteration and ductal comedo-type tumour was seen. These results, together with previously reported studies, indicate that germline mutations and, more commonly, somatic mutations in E-cadherin may have an influence on the behaviour of the tumours, rather than predispose to breast cancer.
Resumo:
Rolling circle amplification (RCA) is a surface-anchored DNA replication reaction that can be exploited to visualize single molecular recognition events. Here we report the use of RCA to visualize target DNA sequences as small as 50 nts in peripheral blood lymphocytes or in stretched DNA fibers. Three unique target sequences within the cystic fibrosis transmembrane conductance regulator gene could be detected simultaneously in interphase nuclei, and could be ordered in a linear map in stretched DNA. Allele-discriminating oligonucleotide probes in conjunction with RCA also were used to discriminate wild-type and mutant alleles in the cystic fibrosis transmembrane conductance regulator, p53, BRCA-1, and Gorlin syndrome genes in the nuclei of cultured cells or in DNA fibers. These observations demonstrate that signal amplification by RCA can be coupled to nucleic acid hybridization and multicolor fluorescence imaging to detect single nucleotide changes in DNA within a cytological context or in single DNA molecules. This provides a means for direct physical haplotyping and the analysis of somatic mutations on a cell-by-cell basis.
Resumo:
The homeotic genes controlling segment identity in Drosophila are repressed by the Polycomb group of genes (PcG) and are activated by genes of the trithorax group (trxG). An F1 screen for dominant enhancers of Polycomb yielded a point mutation in the heat shock cognate gene, hsc4, along with mutations corresponding to several known PcG loci. The new mutation is a more potent enhancer of Polycomb phenotypes than an apparent null allele of hsc4 is, although even the null allele occasionally displays homeotic phenotypes associated with the PcG. Previous biochemical results had suggested that HSC4 might interact with BRAHMA, a trxG member. Further analyses now show that there is no physical or genetic interaction between HSC4 and the Brahma complex. HSC4 might be needed for the proper folding of a component of the Polycomb repression complex, or it may be a functional member of that complex.
Resumo:
The recently discovered aging-dependent large accumulation of point mutations in the human fibroblast mtDNA control region raised the question of their occurrence in postmitotic tissues. In the present work, analysis of biopsied or autopsied human skeletal muscle revealed the absence or only minimal presence of those mutations. By contrast, surprisingly, most of 26 individuals 53 to 92 years old, without a known history of neuromuscular disease, exhibited at mtDNA replication control sites in muscle an accumulation of two new point mutations, i.e., A189G and T408A, which were absent or marginally present in 19 individuals younger than 34 years. These two mutations were not found in fibroblasts from 22 subjects 64 to 101 years of age (T408A), or were present only in three subjects in very low amounts (A189G). Furthermore, in several older individuals exhibiting an accumulation in muscle of one or both of these mutations, they were nearly absent in other tissues, whereas the most frequent fibroblast-specific mutation (T414G) was present in skin, but not in muscle. Among eight additional individuals exhibiting partial denervation of their biopsied muscle, four subjects >80 years old had accumulated the two muscle-specific point mutations, which were, conversely, present at only very low levels in four subjects ≤40 years old. The striking tissue specificity of the muscle mtDNA mutations detected here and their mapping at critical sites for mtDNA replication strongly point to the involvement of a specific mutagenic machinery and to the functional relevance of these mutations.
Resumo:
The dwarf pea (Pisum sativum) mutants lka and lkb are brassinosteroid (BR) insensitive and deficient, respectively. The dwarf phenotype of the lkb mutant was rescued to wild type by exogenous application of brassinolide and its biosynthetic precursors. Gas chromatography-mass spectrometry analysis of the endogenous sterols in this mutant revealed that it accumulates 24-methylenecholesterol and isofucosterol but is deficient in their hydrogenated products, campesterol and sitosterol. Feeding experiments using 2H-labeled 24-methylenecholesterol indicated that the lkb mutant is unable to isomerize and/or reduce the Δ24(28) double bond. Dwarfism of the lkb mutant is, therefore, due to BR deficiency caused by blocked synthesis of campesterol from 24-methylenecholesterol. The lkb mutation also disrupted sterol composition of the membranes, which, in contrast to those of the wild type, contained isofucosterol as the major sterol and lacked stigmasterol. The lka mutant was not BR deficient, because it accumulated castasterone. Like some gibberellin-insensitive dwarf mutants, overproduction of castasterone in the lka mutant may be ascribed to the lack of a feedback control mechanism due to impaired perception/signal transduction of BRs. The possibility that castasterone is a biologically active BR is discussed.
Resumo:
Expression of the alcohol dehydrogenase gene (ADH) of Arabidopsis is known to be induced by environmental stresses and regulated developmentally. We used a negative-selection approach to isolate mutants that were defective in regulating the expression of the ADH gene during seed germination; we then characterized three recessive mutants, aar1–1, aar1–2, and aar2–1, which belong to two complementation groups. In addition to their defects during seed germination, mutations in the AAR1 and AAR2 genes also affected anoxic and hypoxic induction of ADH and other glycolytic genes in mature plants. The aar1 and aar2 mutants were also defective in responding to cold and osmotic stress. The two allelic mutants aar1–1and aar1–2 exhibited different phenotypes under cold and osmotic stresses. Based on our results we propose that these mutants are defective in a late step of the signaling pathways that lead to increased expression of the ADH gene and glycolytic genes.
Resumo:
BRCA1 is a breast and ovarian cancer-specific tumor suppressor that seems to be involved in transcription and DNA repair. Here we report that BRCA1 exhibits a bona fide ubiquitin (Ub) protein ligase (E3) activity, and that cancer-predisposing mutations within the BRCA1 RING domain abolish its Ub ligase activity. Furthermore, these mutants are unable to reverse γ-radiation hypersensitivity of BRCA1-null human breast cancer cells, HCC1937. Additionally, these mutations within the BRCA1 RING domain are not capable of restoring a G2 + M checkpoint in HCC1937 cells. These results establish a link between Ub protein ligase activity and γ-radiation protection function of BRCA1, and provide an explanation for why mutations within the BRCA1 RING domain predispose to cancer. Furthermore, we propose that the analysis of the Ub ligase activity of RING-domain mutations identified in patients may constitute an assay to predict predisposition to cancer.
Resumo:
Brassinosteroid-insensitive 1 (BRI1) of Arabidopsis thaliana encodes a cell surface receptor for brassinosteroids. Mutations in BRI1 severely affect plant growth and development. Activation tagging of a weak bri1 allele (bri1-5) resulted in the identification of a new locus, brs1-1D. BRS1 is predicted to encode a secreted carboxypeptidase. Whereas a brs1 loss-of-function allele has no obvious mutant phenotype, overexpression of BRS1 can suppress bri1 extracellular domain mutants. Genetic analyses showed that brassinosteroids and a functional BRI1 protein kinase domain are required for suppression. In addition, overexpressed BRS1 missense mutants, predicted to abolish BRS1 protease activity, failed to suppress bri1-5. Finally, the effects of BRS1 are selective: overexpression in either wild-type or two other receptor kinase mutants resulted in no phenotypic alterations. These results strongly suggest that BRS1 processes a protein involved in an early event in the BRI1 signaling.