162 resultados para Gene pathway


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross-linking of the high-affinity IgE receptor (FcɛRI) on mast cells with IgE and multivalent antigen triggers mitogen-activated protein (MAP) kinase activation and cytokine gene expression. We report here that MAP kinase kinase 4 (MKK4) gene disruption does not affect either MAP kinase activation or cytokine gene expression in response to cross-linking of FcɛRI in embryonic stem cell-derived mast cells. MKK7 is activated in response to cross-linking of FcɛRI, and this activation is inhibited by MAP/ERK kinase (MEK) kinase 2 (MEKK2) gene disruption. In addition, expression of kinase-inactive MKK7 in the murine mast cell line MC/9 inhibits c-Jun NH2-terminal kinase (JNK) activation in response to cross-linking of FcɛRI, whereas expression of kinase-inactive MKK4 does not affect JNK activation by this stimulus. However, FcɛRI-induced activation of the tumor necrosis factor-α (TNF-α) gene promoter is not affected by expression of kinase-inactive MKK7. We describe an alternative pathway by which MEKK2 activates MEK5 and big MAP kinase1/extracellular signal-regulated kinase 5 in addition to MKK7 and JNK, and interruption of this pathway inhibits TNF-α promoter activation. These findings suggest that JNK activation by antigen cross-linking is dependent on the MEKK2-MKK7 pathway, and cytokine production in mast cells is regulated in part by the signaling complex MEKK2-MEK5-ERK5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-day exposure of the grass Lolium temulentum may regulate flowering via changes in gibberellin (GA) levels. Therefore, we have examined both GA levels and expression of a MYB transcription factor that is specific to the GA signal transduction pathway in monocots. This MYB gene from L. temulentum shows over 90% nucleotide identity with the barley and rice GAMYB genes, and, like them, gibberellic acid (GA3) up-regulates its expression in the seed. Furthermore, cDNAs of both the barley and L. temulentum GAMYB show the same simple patterns of hybridization with digests of L. temulentum genomic DNA. Compared with vegetative shoot apices of L. temulentum, the in situ mRNA expression of LtGAMYB does not change during the earliest steps of “floral” initiation at the apex. However, by 100 h (the double-ridge stage of flowering) its expression increased substantially and was highest in the terminal and lateral spikelet sites. Thereafter, expression declined overall but then increased within stamen primordia. Prior to increased LtGAMYB expression, long-day exposure sufficient to induce flowering led to increased (5- to 20-fold) levels of GA1 and GA4 in the leaf. Thus, increases first in GA level in the leaf followed by increased expression of LtGAMYB in the apex suggest important signaling and/or response roles in flowering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two key genes in terpenoid indole alkaloid biosynthesis, Tdc and Str, encoding tryptophan decarboxylase and strictosidine synthase, respectively, are coordinately induced by fungal elicitors in suspension-cultured Catharanthus roseus cells. We have studied the roles of the jasmonate biosynthetic pathway and of protein phosphorylation in signal transduction initiated by a partially purified elicitor from yeast extract. In addition to activating Tdc and Str gene expression, the elicitor also induced the biosynthesis of jasmonic acid. The jasmonate precursor α-linolenic acid or methyl jasmonate (MeJA) itself induced Tdc and Str gene expression when added exogenously . Diethyldithiocarbamic acid, an inhibitor of jasmonate biosynthesis, blocked both the elicitor-induced formation of jasmonic acid and the activation of terpenoid indole alkaloid biosynthetic genes. The protein kinase inhibitor K-252a abolished both elicitor-induced jasmonate biosynthesis and MeJA-induced Tdc and Str gene expression. Analysis of the expression of Str promoter/gusA fusions in transgenic C. roseus cells showed that the elicitor and MeJA act at the transcriptional level. These results demonstrate that the jasmonate biosynthetic pathway is an integral part of the elicitor-triggered signal transduction pathway that results in the coordinate expression of the Tdc and Str genes and that protein kinases act both upstream and downstream of jasmonates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protein kinase CK2 (formerly casein kinase II) is thought to be involved in light-regulated gene expression in plants because of its ability to phosphorylate transcription factors that bind to the promoter regions of light-regulated genes in vitro. To address this possibility in vivo and to learn more about the potential physiological roles of CK2 in plants, we transformed Arabidopsis with an antisense construct of the CK2 α-subunit gene and investigated both morphological and molecular phenotypes. Antisense transformants had a smaller adult leaf size and showed increased expression of chs in darkness and of cab and rbcS after red-light treatment. The latter molecular phenotype implied that CK2 might serve as one of several negative and quantitative effectors in light-regulated gene expression. The possible mechanism of CK2 action and its involvement in the phytochrome signal transduction pathway are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have identified two genes from Arabidopsis that show high similarity with CBF1, a gene encoding an AP2 domain-containing transcriptional activator that binds to the low-temperature-responsive element CCGAC and induces the expression of some cold-regulated genes, increasing plant freezing tolerance. These two genes, which we have named CBF2 and CBF3, also encode proteins containing AP2 DNA-binding motifs. Furthermore, like CBF1, CBF2 and CBF3 proteins also include putative nuclear-localization signals and potential acidic activation domains. The CBF2 and CBF3 genes are linked to CBF1, constituting a cluster on the bottom arm of chromosome IV. The high level of similarity among the three CBF genes, their tandem organization, and the fact that they have the same transcriptional orientation all suggest a common origin. CBF1, CBF2, and CBF3 show identical expression patterns, being induced very rapidly by low-temperature treatment. However, in contrast to most of the cold-induced plant genes characterized, they are not responsive to abscisic acid or dehydration. Taken together, all of these data suggest that CBF2 and CBF3 may function as transcriptional activators, controlling the level of low-temperature gene expression and promoting freezing tolerance through an abscisic acid-independent pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Filamentous fungi are a large group of diverse and economically important microorganisms. Large-scale gene disruption strategies developed in budding yeast are not applicable to these organisms because of their larger genomes and lower rate of targeted integration (TI) during transformation. We developed transposon-arrayed gene knockouts (TAGKO) to discover genes and simultaneously create gene disruption cassettes for subsequent transformation and mutant analysis. Transposons carrying a bacterial and fungal drug resistance marker are used to mutagenize individual cosmids or entire libraries in vitro. Cosmids are annotated by DNA sequence analysis at the transposon insertion sites, and cosmid inserts are liberated to direct insertional mutagenesis events in the genome. Based on saturation analysis of a cosmid insert and insertions in a fungal cosmid library, we show that TAGKO can be used to rapidly identify and mutate genes. We further show that insertions can create alterations in gene expression, and we have used this approach to investigate an amino acid oxidation pathway in two important fungal phytopathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of the cardiac myocyte as a mediator of paracrine signaling in the heart has remained unclear. To address this issue, we generated mice with cardiac myocyte-specific deletion of the vascular endothelial growth factor gene, thereby producing a cardiomyocyte-specific knockout of a secreted factor. The hearts of these mice had fewer coronary microvessels, thinned ventricular walls, depressed basal contractile function, induction of hypoxia-responsive genes involved in energy metabolism, and an abnormal response to β-adrenergic stimulation. These findings establish the critical importance of cardiac myocyte-derived vascular endothelial growth factor in cardiac morphogenesis and determination of heart function. Further, they establish an adult murine model of hypovascular nonnecrotic cardiac contractile dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have shown that the genes of the gibberellin (GA) biosynthesis pathway in the fungus Gibberella fujikuroi are organized in a cluster of at least seven genes. P450–1 is one of four cytochrome P450 monooxygenase genes in this cluster. Disruption of the P450–1 gene in the GA-producing wild-type strain IMI 58289 led to total loss of GA production. Analysis of the P450–1-disrupted mutants indicated that GA biosynthesis was blocked immediately after ent-kaurenoic acid. The function of the P450–1 gene product was investigated further by inserting the gene into mutants of G. fujikuroi that lack the entire GA gene cluster; the gene was highly expressed under GA production conditions in the absence of the other GA-biosynthesis genes. Cultures of transformants containing P450–1 converted ent-[14C]kaurenoic acid efficiently into [14C]GA14, indicating that P450–1 catalyzes four sequential steps in the GA-biosynthetic pathway: 7β-hydroxylation, contraction of ring B by oxidation at C-6, 3β-hydroxylation, and oxidation at C-7. The GA precursors ent-7α-hydroxy[14C]kaurenoic acid, [14C]GA12-aldehyde, and [14C]GA12 were also converted to [14C]GA14. In addition, there is an indication that P450–1 may also be involved in the formation of the kaurenolides and fujenoic acids, which are by-products of GA biosynthesis in G. fujikuroi. Thus, P450–1 displays remarkable multifunctionality and may be responsible for the formation of 12 products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leishmania parasites lack a purine biosynthetic pathway and depend on surface nucleoside and nucleobase transporters to provide them with host purines. Leishmania donovani possess two closely related genes that encode high affinity adenosine-pyrimidine nucleoside transporters LdNT1.1 and LdNT1.2 and that transport the toxic adenosine analog tubercidin in addition to the natural substrates. In this study, we have characterized a drug-resistant clonal mutant of L. donovani (TUBA5) that is deficient in LdNT1 transport and consequently resistant to tubercidin. In TUBA5 cells, the LdNT1.2 genes had the same sequence as wild-type cells. However, because LdNT1.2 mRNA is not detectable in either wild-type or TUBA5 promastigotes, LdNT1.2 does not contribute to nucleoside transport in this stage of the life cycle. In contrast, the TUBA5 cells were compound heterozygotes at the LdNT1.1 locus containing two mutant alleles that encompassed distinct point mutations, each of which impaired transport function. One of the mutant LdNT1.1 alleles encoded a G183D substitution in predicted TM 5, and the other allele contained a C337Y change in predicted TM 7. Whereas G183D and C337Y mutants had only slightly elevated adenosine Km values, the severe impairment in transport resulted from drastically (≈20-fold) reduced Vmax values. Because these transporters were correctly targeted to the plasma membrane, the reduction in Vmax apparently resulted from a defect in translocation. Strikingly, G183 was essential for pyrimidine nucleoside but not adenosine transport. A mutant transporter with a G183A substitution had an altered substrate specificity, exhibiting robust adenosine transport but undetectable uridine uptake. These results suggest that TM 5 is likely to form part of the nucleoside translocation pathway in LdNT1.1

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphoinositide-dependent kinase-1 (PDK-1) is a central mediator of the cell signaling between phosphoinositide 3-kinase (PI3K) and various intracellular serine/threonine kinases including Akt/protein kinase B (PKB), p70 S6 kinases, and protein kinase C. Recent studies with cell transfection experiments have implied that PDK-1 may be involved in various cell functions including cell growth and apoptosis. However, despite its pivotal role in cellular signalings, the in vivo functions of PDK-1 in a multicellular system have rarely been investigated. Here, we have isolated Drosophila PDK-1 (dPDK-1) mutants and characterized the in vivo roles of the kinase. Drosophila deficient in the dPDK-1 gene exhibited lethality and an apoptotic phenotype in the embryonic stage. Conversely, overexpression of dPDK-1 increased cell and organ size in a Drosophila PI3K-dependent manner. dPDK-1 not only could activate Drosophila Akt/PKB (Dakt1), but also substitute the in vivo functions of its mammalian ortholog to activate Akt/PKB. This functional interaction between dPDK-1 and Dakt1 was further confirmed through genetic analyses in Drosophila. On the other hand, cAMP-dependent protein kinase, which has been proposed as a possible target of dPDK-1, did not interact with dPDK-1. In conclusion, our findings provide direct evidence that dPDK-1 regulates cell growth and apoptosis during Drosophila development via the PI3K-dependent signaling pathway and demonstrate our Drosophila system to be a powerful tool for elucidating the in vivo functions and targets of PDK-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antisense-mediated gene silencing (ASGS) and posttranscriptional gene silencing (PTGS) with sense transgenes markedly reduce the steady-state mRNA levels of endogenous genes similar in transcribed sequence. RNase protection assays established that silencing in tobacco plants transformed with plant-defense-related class I sense and antisense chitinase (CHN) transgenes is at the posttranscriptional level. Infection of tobacco plants with cucumber mosaic virus strain FN and a necrotizing strain of potato virus Y, but not with potato virus X, effectively suppressed PTGS and ASGS of both the transgenes and homologous endogenes. This suggests that ASGS and PTGS share components associated with initiation and maintenance of the silent state. Small, ca. 25-nt RNAs (smRNA) of both polarities were associated with PTGS and ASGS in CHN transformants as reported for PTGS in other transgenic plants and for RNA interference in Drosophila. Similar results were obtained with an antisense class I β-1,3-glucanase transformant showing that viral suppression and smRNAs are a more general feature of ASGS. Several current models hold that diverse signals lead to production of double-stranded RNAs, which are processed to smRNAs that then trigger PTGS. Our results provide direct evidence for mechanistic links between ASGS and PTGS and suggest that ASGS could join a common PTGS pathway at the double-stranded RNA step.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most recently discovered PTEN tumor suppressor gene has been found to be defective in a large number of human cancers. In addition, germ-line mutations in PTEN result in the dominantly inherited disease Cowden syndrome, which is characterized by multiple hamartomas and a high proclivity for developing cancer. A series of publications over the past year now suggest a mechanism by which PTEN loss of function results in tumors. PTEN appears to negatively control the phosphoinositide 3-kinase signaling pathway for regulation of cell growth and survival by dephosphorylating the 3 position of phosphoinositides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas aeruginosa, an important opportunistic human pathogen, persists in certain tissues in the form of specialized bacterial communities, referred to as biofilm. The biofilm is formed through series of interactions between cells and adherence to surfaces, resulting in an organized structure. By screening a library of Tn5 insertions in a nonpiliated P. aeruginosa strain, we identified genes involved in early stages of biofilm formation. One class of mutations identified in this study mapped in a cluster of genes specifying the components of a chaperone/usher pathway that is involved in assembly of fimbrial subunits in other microorganisms. These genes, not previously described in P. aeruginosa, were named cupA1–A5. Additional chaperone/usher systems (CupB and CupC) have been also identified in the genome of P. aeruginosa PAO1; however, they do not appear to play a role in adhesion under the conditions where the CupA system is expressed and functions in surface adherence. The identification of these putative adhesins on the cell surface of P. aeruginosa suggests that this organism possess a wide range of factors that function in biofilm formation. These structures appear to be differentially regulated and may function at distinct stages of biofilm formation, or in specific environments colonized by this organism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We searched for new components that are involved in the positive regulation of nuclear gene expression by light by extending a screen for Arabidopsis cue (chlorophyll a/b-binding [CAB] protein-underexpressed) mutants (H.-M. Li, K. Culligan, R.A. Dixon, J. Chory [1995] Plant Cell 7: 1599–1610). cue mutants display reduced expression of the CAB3 gene, which encodes light-harvesting chlorophyll protein, the main chloroplast antenna. The new mutants can be divided into (a) phytochrome-deficient mutants (hy1 and phyB), (b) virescent or delayed-greening mutants (cue3, cue6, and cue8), and (c) uniformly pale mutants (cue4 and cue9). For each of the mutants, the reduction in CAB expression correlates with the visible phenotype, defective chloroplast development, and reduced abundance of the light-harvesting chlorophyll protein. Levels of protochlorophyllide oxidoreductase (POR) were reduced to varying degrees in etiolated mutant seedlings. In the dark, whereas the virescent mutants displayed reduced CAB expression and the lowest levels of POR protein, the other mutants expressed CAB and accumulated POR at near wild-type levels. All of the mutants, with the exception of cue6, were compromised in their ability to derepress CAB expression in response to phytochrome activation. Based on these results, we propose that the previously postulated plastid-derived signal is closely involved in the pathway through which phytochrome regulates the expression of nuclear genes encoding plastid proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphoribosyl-ATP pyrophosphohydrolase (PRA-PH) and phosphoribosyl-AMP cyclohydrolase (PRA-CH) are encoded by HIS4 in yeast and by hisIE in bacteria and catalyze the second and the third step, respectively, in the histidine biosynthetic pathway. By complementing a hisI mutation of Escherichia coli with an Arabidopsis cDNA library, we isolated an Arabidopsis cDNA (At-IE) that possesses these two enzyme activities. The At-IE cDNA encodes a bifunctional protein of 281 amino acids with a calculated molecular mass of 31,666 D. Genomic DNA-blot analysis with the At-IE cDNA as a probe revealed a single-copy gene in Arabidopsis, and RNA-blot analysis showed that the At-IE gene was expressed ubiquitously throughout development. Sequence comparison suggested that the At-IE protein has an N-terminal extension of about 50 amino acids with the properties of a chloroplast transit peptide. We demonstrated through heterologous expression studies in E. coli that the functional domains for the PRA-CH (hisI) and PRA-PH (hisE) resided in the N-terminal and the C-terminal halves, respectively, of the At-IE protein.