137 resultados para Gases in plants.
Resumo:
To optimize photosynthesis, cyanobacteria move toward or away from a light source by a process known as phototaxis. Phototactic movement of the cyanobacterium Synechocystis PCC6803 is a surface-dependent phenomenon that requires type IV pili, cellular appendages implicated in twitching and social motility in a range of bacteria. To elucidate regulation of cyanobacterial motility, we generated transposon-tagged mutants with aberrant phototaxis; mutants were either nonmotile or exhibited an “inverted motility response” (negative phototaxis) relative to wild-type cells. Several mutants contained transposons in genes similar to those involved in bacterial chemotaxis. Synechocystis PCC6803 has three loci with chemotaxis-like genes, of which two, Tax1 and Tax3, are involved in phototaxis. Transposons interrupting the Tax1 locus yielded mutants that exhibited an inverted motility response, suggesting that this locus is involved in controlling positive phototaxis. However, a strain null for taxAY1 was nonmotile and hyperpiliated. Interestingly, whereas the C-terminal region of the TaxD1 polypeptide is similar to the signaling domain of enteric methyl-accepting chemoreceptor proteins, the N terminus has two domains resembling chromophore-binding domains of phytochrome, a photoreceptor in plants. Hence, TaxD1 may play a role in perceiving the light stimulus. Mutants in the Tax3 locus are nonmotile and do not make type IV pili. These findings establish links between chemotaxis-like regulatory elements and type IV pilus-mediated phototaxis.
Resumo:
3-Methylcrotonyl-coenzyme A carboxylase (MCCase) is a mitochondrial biotin-containing enzyme whose metabolic function is not well understood in plants. In soybean (Glycine max) seedlings the organ-specific and developmentally induced changes in MCCase expression are regulated by mechanisms that control the accumulation of MCCase mRNA and the activity of the enzyme. During soybean cotyledon development, when seed-storage proteins are degraded, leucine (Leu) accumulation peaks transiently at 8 d after planting. The coincidence between peak MCCase expression and the decline in Leu content provides correlative evidence that MCCase is involved in the mitochondrial catabolism of Leu. Direct evidence for this conclusion was obtained from radiotracer metabolic studies using extracts from isolated mitochondria. These experiments traced the metabolic fate of [U-14C]Leu and NaH14CO3, the latter of which was incorporated into methylglutaconyl-coenzyme A (CoA) via MCCase. These studies directly demonstrate that plant mitochondria can catabolize Leu via the following scheme: Leu → α-ketoisocaproate → isovaleryl-CoA → 3-methylcrotonyl-CoA → 3-methylglutaconyl-CoA → 3-hydroxy-3-methylglutaryl-CoA → acetoacetate + acetyl-CoA. These findings demonstrate for the first time, to our knowledge, that the enzymes responsible for Leu catabolism are present in plant mitochondria. We conclude that a primary metabolic role of MCCase in plants is the catabolism of Leu.
Resumo:
We studied the expression of three promoter 5′ deletion constructs (−218, −599, and −1312) of the LEA (late embryogenesis abundant)-class gene Dc3 fused to β-glucuronidase (GUS), where each construct value refers to the number of base pairs upstream of the transcription start site at which the deletion occurred. The Dc3 gene is noted for its induction by abscisic acid (ABA), but its response to other plant hormones and various environmental stresses has not been reported previously for vegetative cells. Fourteen-day-old transgenic tobacco (Nicotiana tabacum L.) seedlings were exposed to dehydration, hypoxia, salinity, exogenous ethylene, or exogenous methyl jasmonate (MeJa). GUS activity was quantified fluorimetrically and expression was observed by histochemical staining of the seedlings. An increase in GUS activity was observed in plants with constructs −599 and −1312 in response to dehydration and salinity within 6 h of stress, and at 12 h in response to hypoxia. No increase in endogenous ABA was found in any of the three lines, even after 72 h of hypoxia. An ABA-independent increase in GUS activity was observed when endogenous ABA biosynthesis was blocked by fluridone and plants were exposed to 5 μL L−1 ethylene in air or 100 μm MeJa. Virtually no expression was observed in construct −218 in response to dehydration, salinity, or MeJa, but there was a moderate response to ethylene and hypoxia. This suggests that the region between −218 and −599 is necessary for ABA (dehydration and salinity)- and MeJa-dependent expression, whereas ethylene-mediated expression does not require this region of the promoter.
Resumo:
The cDNA clone ERD5 (early responsive to dehydration), isolated from 1-h-dehydrated Arabidopsis, encodes a precursor of proline (Pro) dehydrogenase (ProDH), which is a mitochondrial enzyme involved in the first step of the conversion of Pro to glutamic acid. The transcript of the erd5 (ProDH) gene was undetectable when plants were dehydrated, but large amounts of transcript accumulated when plants were subsequently rehydrated. Accumulation of the transcript was also observed in plants that had been incubated under hypoosmotic conditions in media that contained l- or d-Pro. We isolated a 1.4-kb DNA fragment of the putative promoter region of the ProDH gene. The β-glucuronidase (GUS) reporter gene driven by the 1.4-kb ProDH promoter was induced not only by rehydration but also by hypoosmolarity and l- and d-Pro at significant levels in transgenic Arabidopsis plants. The promoter of the ProDH gene directs strong GUS activity in reproductive organs such as pollen and pistils and in the seeds of the transgenic plants. GUS activity was detected in vegetative tissues such as veins of leaves and root tips when the transgenic plants were exposed to hypoosmolarity and Pro solutions. GUS activity increased during germination of the transgenic plants under hypoosmolarity. The relationship between Pro metabolism and the physiological aspects of stress response and development are discussed.
Resumo:
In animal cell lysates the multiprotein heat-shock protein 90 (hsp90)-based chaperone complexes consist of hsp70, hsp40, and p60. These complexes act to convert steroid hormone receptors to their steroid-binding state by assembling them into heterocomplexes with hsp90, p23, and one of several immunophilins. Wheat germ lysate also contains a hsp90-based chaperone system that can assemble the glucocorticoid receptor into a functional heterocomplex with hsp90. However, only two components of the heterocomplex-assembly system, hsp90 and hsp70, have thus far been identified. Recently, purified mammalian p23 preadsorbed with JJ3 antibody-protein A-Sepharose pellets was used to isolate a mammalian p23-wheat hsp90 heterocomplex from wheat germ lysate (J.K. Owens-Grillo, L.F. Stancato, K. Hoffmann, W.B. Pratt, and P. Krishna [1996] Biochemistry 35: 15249–15255). This heterocomplex was found to contain an immunophilin(s) of the FK506-binding class, as judged by binding of the radiolabeled immunosuppressant drug [3H]FK506 to the immune pellets in a specific manner. In the present study we identified the immunophilin components of this heterocomplex as FKBP73 and FKBP77, the two recently described high-molecular-weight FKBPs of wheat. In addition, we present evidence that the two FKBPs bind hsp90 via tetratricopeptide repeat domains. Our results demonstrate that binding of immunophilins to hsp90 via tetratricopeptide repeat domains is a conserved protein interaction in plants. Conservation of this protein-to-protein interaction in both plant and animal cells suggests that it is important for the biological action of the high-molecular-weight immunophilins.
Resumo:
In an earlier paper we showed that in fully developed barley (Hordeum vulgare L.) root epidermal cells a decrease in cytosolic K+ was associated with an acidification of the cytosol (D.J. Walker, R.A. Leigh, A.J. Miller [1996] Proc Natl Acad Sci USA 93: 10510–10514). To show that these changes in cytosolic ion concentrations contributed to the decreased growth of K+-starved roots, we first measured whether similar changes occurred in cells of the growing zone. Triple-barreled ion-selective microelectrodes were used to measure cytosolic K+ activity and pH in cells 0.5 to 1.0 mm from the root tip. In plants growing from 7 to 21 d after germination under K+-replete conditions, the mean values did not change significantly, with values ranging from 80 to 84 mm for K+ and 7.3 to 7.4 for pH. However, in K+-starved plants (external [K+], 2 μm), the mean cytosolic K+ activity and pH had declined to 44 mm and 7.0, respectively, after 14 d. For whole roots, sap osmolality was always lower in K+-starved than in K+-replete plants, whereas elongation rate and dry matter accumulation were significantly decreased after 14 and 16 d of K+ starvation. The rate of protein synthesis in root tips did not change for K+-replete plants but declined significantly with age in K+-starved plants. Butyrate treatment decreased cytosolic pH and diminished the rate of protein synthesis in K+-replete roots. Procaine treatment of K+-starved roots gave an alkalinization of the cytosol and increased protein synthesis rate. These results show that changes in both cytosolic pH and K+ can be significant factors in inhibiting protein synthesis and root growth during K+ deficiency.
Resumo:
This work illustrates potential adverse effects linked with the expression of proteinase inhibitor (PI) in plants used as a strategy to enhance pest resistance. Tobacco (Nicotiana tabacum L. cv Xanthi) and Arabidopsis [Heynh.] ecotype Wassilewskija) transgenic plants expressing the mustard trypsin PI 2 (MTI-2) at different levels were obtained. First-instar larvae of the Egyptian cotton worm (Spodoptera littoralis Boisd.) were fed on detached leaves of these plants. The high level of MTI-2 expression in leaves had deleterious effects on larvae, causing mortality and decreasing mean larval weight, and was correlated with a decrease in the leaf surface eaten. However, larvae fed leaves from plants expressing MTI-2 at the low expression level did not show increased mortality, but a net gain in weight and a faster development compared with control larvae. The low MTI-2 expression level also resulted in increased leaf damage. These observations are correlated with the differential expression of digestive proteinases in the larval gut; overexpression of existing proteinases on low-MTI-2-expression level plants and induction of new proteinases on high-MTI-2-expression level plants. These results emphasize the critical need for the development of a PI-based defense strategy for plants obtaining the appropriate PI-expression level relative to the pest's sensitivity threshold to that PI.
Resumo:
Plasmodesmata mediate direct cell-to-cell communication in plants. One of their significant features is that primary plasmodesmata formed at the time of cytokinesis often undergo structural modifications, by the de novo addition of cytoplasmic strands across cell walls, to become complex secondary plasmodesmata during plant development. Whether such modifications allow plasmodesmata to gain special transport functions has been an outstanding issue in plant biology. Here we present data showing that the cucumber mosaic virus 3a movement protein (MP):green fluorescent protein (GFP) fusion was not targeted to primary plasmodesmata in the epidermis of young or mature leaves in transgenic tobacco (Nicotiana tabacum) plants constitutively expressing the 3a:GFP fusion gene. Furthermore, the cucumber mosaic virus 3a MP:GFP fusion protein produced in planta by biolistic bombardment of the 3a:GFP fusion gene did not traffic between cells interconnected by primary plasmodesmata in the epidermis of a young leaf. In contrast, the 3a MP:GFP was targeted to complex secondary plasmodesmata and trafficked from cell to cell when a leaf reached a certain developmental stage. These data provide the first experimental evidence, to our knowledge, that primary and complex secondary plasmodesmata have different protein-trafficking functions and suggest that complex secondary plasmodesmata may be formed to traffic specific macromolecules that are important for certain stages of leaf development.
Resumo:
The spatial and temporal expression patterns of metallothionein (MT) isoforms MT1a and MT2a were investigated in vegetative and reproductive tissues of untreated and copper-treated Arabidopsis by in situ hybridization and by northern blotting. In control plants, MT1a mRNA was localized in leaf trichomes and in the vascular tissue in leaves, roots, flowers, and germinating embryos. In copper-treated plants, MT1a expression was also observed in the leaf mesophyll and in vascular tissue of developing siliques and seeds. In contrast, MT2a was expressed primarily in the trichomes of both untreated and copper-treated plants. In copper-treated plants, MT2a mRNA was also expressed in siliques. Northern-hybridization studies performed on developing seedlings and leaves showed temporal variations of MT1a gene expression but not of MT2a expression. The possible implications of these findings for the cellular roles of MTs in plants are discussed.
Resumo:
The accumulation of soluble carbohydrates resulting from growth under elevated CO2 may potentially signal the repression of gene activity for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcS). To test this hypothesis we grew rice (Oryza sativa L.) under ambient (350 μL L−1) and high (700 μL L−1) CO2 in outdoor, sunlit, environment-controlled chambers and performed a cross-switching of growth CO2 concentration at the late-vegetative phase. Within 24 h, plants switched to high CO2 showed a 15% and 23% decrease in rbcS mRNA, whereas plants switched to ambient CO2 increased 27% and 11% in expanding and mature leaves, respectively. Ribulose-1,5-bisphosphate carboxylase/oxygenase total activity and protein content 8 d after the switch increased up to 27% and 20%, respectively, in plants switched to ambient CO2, but changed very little in plants switched to high CO2. Plants maintained at high CO2 showed greater carbohydrate pool sizes and lower rbcS transcript levels than plants kept at ambient CO2. However, after switching growth CO2 concentration, there was not a simple correlation between carbohydrate and rbcS transcript levels. We conclude that although carbohydrates may be important in the regulation of rbcS expression, changes in total pool size alone could not predict the rapid changes in expression that we observed.
Resumo:
Salicylic acid (SA) is an important component of systemic-acquired resistance in plants. It is synthesized from benzoic acid (BA) as part of the phenylpropanoid pathway. Benzaldehyde (BD), a potential intermediate of this pathway, was found in healthy and tobacco mosaic virus (TMV)-inoculated tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaf tissue at 100 ng/g fresh weight concentrations as measured by gas chromatography-mass spectrometry. BD was also emitted as a volatile organic compound from tobacco tissues. Application of gaseous BD to plants enclosed in jars caused a 13-fold increase in SA concentration, induced the accumulation of the pathogenesis-related transcript PR-1, and increased the resistance of tobacco to TMV inoculation. [13C6]BD and [2H5]benzyl alcohol were converted to BA and SA. Labeling experiments using [13C1]Phe in temperature-shifted plants inoculated with the TMV showed high enrichment of cinnamic acids (72%), BA (34%), and SA (55%). The endogenous BD, however, contained nondetectable enrichment, suggesting that BD was not the intermediate between cinnamic acid and BA. These results show that BD and benzyl alcohol promote SA accumulation and expression of defense responses in tobacco, and provide insight into the early steps of SA biosynthesis.
Resumo:
Isoprenylation is a posttranslational modification that is believed to be necessary, but not sufficient, for the efficient association of numerous eukaryotic cell proteins with membranes. Additional modifications have been shown to be required for proper intracellular targeting and function of certain isoprenylated proteins in mammalian and yeast cells. Although protein isoprenylation has been demonstrated in plants, postisoprenylation processing of plant proteins has not been described. Here we demonstrate that cultured tobacco (Nicotiana tabacum cv Bright Yellow-2) cells contain farnesylcysteine and geranylgeranylcysteine α-carboxyl methyltransferase activities with apparent Michaelis constants of 73 and 21 μm for N-acetyl-S-trans,trans-farnesyl-l-cysteine and N-acetyl-S-all-trans-geranylgeranyl-l-cysteine, respectively. Furthermore, competition analysis indicates that the same enzyme is responsible for both activities. These results suggest that α-carboxyl methylation is a step in the maturation of isoprenylated proteins in plants.
Resumo:
Enhanced Cl− efflux during acidosis in plants is thought to play a role in cytosolic pH (pHc) homeostasis by short-circuiting the current produced by the electrogenic H+ pump, thereby facilitating enhanced H+ efflux from the cytosol. Using an intracellular perfusion technique, which enables experimental control of medium composition at the cytosolic surface of the plasma membrane of charophyte algae (Chara corallina), we show that lowered pHc activates Cl− efflux via two mechanisms. The first is a direct effect of pHc on Cl− efflux; the second mechanism comprises a pHc-induced increase in affinity for cytosolic free Ca2+ ([Ca2+]c), which also activates Cl− efflux. Cl− efflux was controlled by phosphorylation/dephosphorylation events, which override the responses to both pHc and [Ca2+]c. Whereas phosphorylation (perfusion with the catalytic subunit of protein kinase A in the presence of ATP) resulted in a complete inhibition of Cl− efflux, dephosphorylation (perfusion with alkaline phosphatase) arrested Cl− efflux at 60% of the maximal level in a manner that was both pHc and [Ca2+]c independent. These findings imply that plasma membrane anion channels play a central role in pHc regulation in plants, in addition to their established roles in turgor/volume regulation and signal transduction.
Resumo:
Aquaporins are integral membrane proteins of the tonoplast and the plasma membrane that facilitate the passage of water through these membranes. Because of their potentially important role in regulating water flow in plants, studies documenting aquaporin gene expression in specialized tissues involved in water and solute transport are important. We used in situ hybridization to examine the expression pattern of the tonoplast aquaporin ZmTIP1 in different organs of maize (Zea mays L.). This tonoplast water channel is highly expressed in the root epidermis, the root endodermis, the small parenchyma cells surrounding mature xylem vessels in the root and the stem, phloem companion cells and a ring of cells around the phloem strand in the stem and the leaf sheath, and the basal endosperm transfer cells in developing kernels. We postulate that the high level of expression of ZmTIP1 in these tissues facilitates rapid flow of water through the tonoplast to permit osmotic equilibration between the cytosol and the vacuolar content, and to permit rapid transcellular water flow through living cells when required.
Resumo:
It is well established that the expression of Bacillus thuringiensis (B.t.) toxin genes in higher plants is severely limited at the mRNA level, but the cause remains controversial. Elucidating whether mRNA accumulation is limited transcriptionally or posttranscriptionally could contribute to effective gene design as well as provide insights about endogenous plant gene-expression mechanisms. To resolve this controversy, we compared the expression of an A/U-rich wild-type cryIA(c) gene and a G/C-rich synthetic cryIA(c) B.t.-toxin gene under the control of identical 5′ and 3′ flanking sequences. Transcriptional activities of the genes were equal as determined by nuclear run-on transcription assays. In contrast, mRNA half-life measurements demonstrated directly that the wild-type transcript was markedly less stable than that encoded by the synthetic gene. Sequences that limit mRNA accumulation were located at more than one site within the coding region, and some appeared to be recognized in Arabidopsis but not in tobacco (Nicotiana tabacum). These results support previous observations that some A/U-rich sequences can contribute to mRNA instability in plants. Our studies further indicate that some of these sequences may be differentially recognized in tobacco cells and Arabidopsis.