275 resultados para Fibroblast Growth Factor 3


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Like human gliomas, the rat 9L gliosarcoma secretes the immunosuppressive transforming growth factor beta (TGF-beta). Using the 9L model, we tested our hypothesis that genetic modification of glioma cells to block TGF-beta expression may enhance their immunogenicity and make them more suitable for active tumor immunotherapy. Subcutaneous immunizations of tumor-bearing animals with 9L cells genetically modified to inhibit TGF-beta expression with an antisense plasmid vector resulted in a significantly higher number of animals surviving for 12 weeks (11/11, 100%) compared to immunizations with control vector-modified 9L cells (2/15, 13%) or 9L cells transduced with an interleukin 2 retroviral vector (3/10, 30%) (P < 0.001 for both comparisons). Histologic evaluation of implantation sites 12 weeks after treatment revealed no evidence of residual tumor. In vitro tumor cytotoxicity assays with lymph node effector cells revealed a 3- to 4-fold increase in lytic activity for the animals immunized with TGF-beta antisense-modified tumor cells compared to immunizations with control vector or interleukin 2 gene-modified tumor cells. These results indicate that inhibition of TGF-beta expression significantly enhances tumor-cell immunogenicity and supports future clinical evaluation of TGF-beta antisense gene therapy for TGF-beta-expressing tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing evidence that activation of the insulin-like growth factor I (IGF-I) receptor plays a major role in the control of cellular proliferation of many cell types. We studied the mitogenic effects of IGF-I, IGF-II, and epidermal growth factor (EGF) on growth-arrested HT-3 cells, a human cervical cancer cell line. All three growth factors promoted dose-dependent increases in cell proliferation. In untransformed cells, EGF usually requires stimulation by a "progression" factor such as IGF-I, IGF-II, or insulin (in supraphysiologic concentrations) in order to exert a mitogenic effect. Accordingly, we investigated whether an autocrine pathway involving IGF-I or IGF-II participated in the EGF-induced mitogenesis of HT-3 cells. With the RNase protection assay, IGF-I mRNA was not detected. However, IGF-II mRNA increased in a time-dependent manner following EGF stimulation. The EGF-induced mitogenesis was abrogated in a dose-dependent manner by IGF-binding protein 5 (IGFBP-5), which binds to IGF-II and neutralizes it. An antisense oligonucleotide to IGF-II also inhibited the proliferative response to EGF. In addition, prolonged, but not short-term, stimulation with EGF resulted in autophosphorylation of the IGF-I receptor, and coincubations with both EGF and IGFBP-5 attenuated this effect. These data demonstrate that autocrine secretion of IGF-II in HT-3 cervical cancer cells can participate in EGF-induced mitogenesis and suggest that autocrine signals involving the IGF-I receptor occur "downstream" of competence growth factor receptors such as the EGF receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The platelet-derived growth factor (PDGF) is a potent mitogen for murine fibroblasts. PDGF-stimulated cells express a set of immediate-early-response genes but require additional (progression) factors in serum to progress through the cell cycle. Serum-deprived cells are reversibly arrested in G0 phase and fail to fully traverse the G1 phase of the cell cycle when stimulated by PDGF alone. We now report that serum-deprived normal rat kidney fibroblast (NRK) cells stimulated by either PDGF AA or PDGF BB homodimers undergo apoptotic cell death. Furthermore, we show that epidermal growth factor also induces apoptotic cell death in serum-deprived NRK cells, epidermal growth factor enhances the rate of apoptosis in PDGF-treated cells, and a progression factor (insulin) but not endogenously expressed Bc1-2 fully protects NRK cells from PDGF-stimulated apoptosis. The results indicate that PDGF induces apoptosis in growth-arrested NRK cells and that the inability of NRK cells to transit the G1/S checkpoint is the critical determinant in establishing the genetic program(s) to direct the PDGF signal to apoptosis. The results suggest that polypeptide growth factors in vivo may signal cell fate positively or negatively in settings that limit the potential of cells to completely transit the cell cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor beta 1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor beta 1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The survival of cultured mouse hippocampal neurons was found to be greatly enhanced by micromolar concentrations of the excitatory neurotransmitter glutamate. Blockade of kainate/AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) glutamate receptors increased the rate of neuron death, suggesting that endogenous glutamate in the cultures promotes survival. Addition of glutamate (0.5-1 microM) further increased neuron survival, whereas glutamate in excess of 20 microM resulted in increased death. Thus, the survival vs. glutamate dose-response relation is bell-shaped with an optimal glutamate concentration near 1 microM. We found that hippocampal neurons from mice with the genetic defect trisomy 16 (Ts16) died 2-3 times faster than normal (euploid) neurons. Moreover, glutamate, at all concentrations tested, failed to increase survival of Ts16 neurons. In contrast, the neurotrophic polypeptide basic fibroblast growth factor did increase the survival of Ts16 and euploid neurons. Ts16 is a naturally occurring mouse genetic abnormality, the human analog of which (Down syndrome) leads to altered brain development and Alzheimer disease. These results demonstrate that the Ts16 genotype confers a defect in the glutamate-mediated survival response of hippocampal neurons and that this defect can contribute to their accelerated death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the cardioprotective effects of insulin-like growth factor I (IGF-I) were examined in a murine model of myocardial ischemia reperfusion (i.e., 20 min + 24 hr). IGF-I (1-10 micrograms per rat) administered 1 hr prior to ischemia significantly attenuated myocardial injury (i.e., creatine kinase loss) compared to vehicle (P < 0.001). In addition, cardiac myeloperoxidase activity, an index of neutrophil accumulation, in the ischemic area was significantly attenuated by IGF-I (P < 0.001). This protective effect of IGF-I was not observed with des-(1-3)-IGF-I. Immunohistochemical analysis of ischemic-reperfused myocardial tissue demonstrated markedly increased DNA fragmentation due to programmed cell death (i.e., apoptosis) compared to nonischemic myocardium. Furthermore, IGF-I significantly attenuated the incidence of myocyte apoptosis after myocardial ischemia and reperfusion. Therefore, IGF-I appears to be an effective agent for preserving ischemic myocardium from reperfusion injury and protects via two different mechanisms--inhibition of polymorphonuclear leukocyte-induced cardiac necrosis and inhibition of reperfusion-induced apoptosis of cardiac myocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Augmentation of vertebrate growth by growth hormone (GH) is primarily due to its regulation of insulin-like growth factor I (IGF I) and IGF II levels. To characterize the effect of GH on the levels of IGF I and IGF II mRNA in a teleost, 10 micrograms of bovine GH (bGH) per g of body weight was administered to juvenile rainbow trout (Oncorhynchus mykiss) through i.p. injection. The levels of IGF I and IGF II mRNA were determined simultaneously, by using RNase protection assays, in the liver, pyloric ceca, kidney, and gill at 0, 1, 3, 6, 12, 24, 48, and 72 hr after injection. In the liver, IGF I mRNA levels were significantly elevated at 6 and 12 hr (approximately 2- to 3-fold, P < or = 0.01), while IGF II mRNA levels were significantly elevated at 3 and 6 hr (approximately 3-fold, P < or = 0.01). In the pyloric ceca, IGF II mRNA levels were significantly elevated at 12, 24, and 48 hr (approximately 3-fold, P < or = 0.01), while IGF I mRNA was below the limits of assay accuracy. GH-dependent IGF mRNA appearance was not detected in the gill and kidney. Serum bGH levels, determined by using a radioimmunoassay, were significantly elevated at 3 and 6 hr (P < 0.005). In primary hepatocyte culture, IGF I and IGF II mRNA levels increased in a bGH dose-dependent fashion, with ED50 values of approximately 45 and approximately 6 ng of bGH per ml, respectively. The GH-dependent appearance of IGF II mRNA in the liver and pyloric ceca suggests important roles for this peptide hormone exclusive of IGF I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neovascularization that generates collateral blood flow can limit the extent of tissue damage after acute ischemia caused by occlusion of the primary blood supply. The neovascular response stimulated by the BB homodimeric form of recombinant platelet-derived growth factor (PDGF-BB) was evaluated for its capacity to protect tissue from necrosis in a rat skin flap model of acutely induced ischemia. Complete survival of the tissue ensued, when the original nutritive blood supply was occluded, as early as 5 days after local PDGF-BB application, and the presence of a patent vasculature was evident compared to control flaps. To further evaluate the vascular regenerative response, PDGF-BB was injected into the muscle/connective tissue bed between the separated ends of a divided femoral artery in rats. A patent new vessel that functionally reconnected the ends of the divided artery within the original 3- to 4-mm gap was regenerated 3 weeks later in all PDGF-BB-treated limbs. In contrast, none of the paired control limbs, which received vehicle with an inactive variant of PDGF-BB, had vessel regrowth (P < 0.001). The absence of a sustained inflammatory response and granulation tissue suggests locally delivered PDGF-BB may directly stimulate the angiogenic phenotype in endothelial cells. These findings indicate that PDGF-BB can generate functional new blood vessels and nonsurgically anastomose severed vessels in vivo. This study supports the possibility of a therapeutic modality for the salvage of ischemic tissue through exogenous cytokine-induced vascular reconnection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To compare effects of insulin-like growth factor I (IGF-I) and placebo treatment on lesions that resemble those seen during active demyelination in multiple sclerosis, we induced experimental autoimmune encephalomyelitis in Lewis rats with an emulsion containing guinea pig spinal cord and Freund's adjuvant. On day 12-13, pairs of rats with the same degree of weakness were given either IGF-I or placebo intravenously twice daily for 8 days. After 8 days of placebo or IGF-I (200 micrograms/day or 1 mg/day) treatment, the spinal cord lesions were studied by in situ hybridization and with immunocytochemical and morphological methods. IGF-I produced significant reductions in numbers and areas of demyelinating lesions. These lesions contained axons surrounded by regenerating myelin segments instead of demyelinated axons seen in the placebo-treated rats. Relative mRNA levels for myelin basic protein, proteolipid protein (PLP), and 2',3'-cyclic nucleotide 3'-phosphodiesterase in lesions of IGF-I-treated rats were significantly higher than they were in placebo-treated rats. PLP mRNA-containing oligodendroglia also were more numerous and relative PLP mRNA levels per oligodendrocyte were higher in lesions of IGF-I-treated rats. Finally, a significantly higher proportion of proliferating cells were oligodendroglia-like cells in lesions of IGF-I-treated rats. We think that IGF-I effects on oligodendrocytes, myelin protein synthesis, and myelin regeneration reduced lesion severity and promoted clinical recovery in this experimental autoimmune encephalomyelitis model. These IGF-I actions may also benefit patients with multiple sclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intraperitoneal injection of epidermal growth factor into mice results in the appearance of multiple tyrosine-phosphorylated proteins in liver nuclei within minutes after administration. We have previously identified three of these proteins as Stat 1 alpha, Stat 1 beta (p91, p84), and Stat 3 (p89). In the present report we demonstrate that Stat 5 (p92), the recently described prolactin inducible transcription factor detected in mammary glands, is the major tyrosine-phosphorylated protein translocated to the nucleus in mouse liver in response to epidermal growth factor. Furthermore, gel-shift analysis and affinity purification revealed that Stat 5, Stat 1 alpha, and Stat 1 beta specifically bind to the prolactin inducible element upstream of the beta-casein promoter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yeast centromeric DNA (CEN DNA) binding factor 3 (CBF3) is a multisubunit protein complex that binds to the essential CDEIII element in CEN DNA. The four CBF3 proteins are required for accurate chromosome segregation and are considered to be core components of the yeast kinetochore. We have examined the structure of the CBF3–CEN DNA complex by atomic force microscopy. Assembly of CBF3–CEN DNA complexes was performed by combining purified CBF3 proteins with a DNA fragment that includes the CEN region from yeast chromosome III. Atomic force microscopy images showed DNA molecules with attached globular bodies. The contour length of the DNA containing the complex is ≈9% shorter than the DNA alone, suggesting some winding of DNA within the complex. The measured location of the single binding site indicates that the complex is located asymmetrically to the right of CDEIII extending away from CDEI and CDEII, which is consistent with previous data. The CEN DNA is bent ≈55° at the site of complex formation. A significant fraction of the complexes are linked in pairs, showing three to four DNA arms, with molecular volumes approximately three times the mean volumes of two-armed complexes. These multi-armed complexes indicate that CBF3 can bind two DNA molecules together in vitro and, thus, may be involved in holding together chromatid pairs during mitosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholinergic neurons respond to the administration of nerve growth factor (NGF) in vivo with a prominent and selective increase of choline acetyl transferase activity. This suggests the possible involvement of endogenous NGF, acting through its receptor TrkA, in the maintenance of central nervous system cholinergic synapses in the adult rat brain. To test this hypothesis, a small peptide, C(92-96), that blocks NGF-TrkA interactions was delivered stereotactically into the rat cortex over a 2-week period, and its effect and potency were compared with those of an anti-NGF monoclonal antibody (mAb NGF30). Two presynaptic antigenic sites were studied by immunoreactivity, and the number of presynaptic sites was counted by using an image analysis system. Synaptophysin was used as a marker for overall cortical synapses, and the vesicular acetylcholine transporter was used as a marker for cortical cholinergic presynaptic sites. No significant variations in the number of synaptophysin-immunoreactive sites were observed. However, both mAb NGF30 and the TrkA antagonist C(92-96) provoked a significant decrease in the number and size of vesicular acetylcholine transporter–IR sites, with the losses being more marked in the C(92-96) treated rats. These observations support the notion that endogenously produced NGF acting through TrkA receptors is involved in the maintenance of the cholinergic phenotype in the normal, adult rat brain and supports the idea that NGF normally plays a role in the continual remodeling of neural circuits during adulthood. The development of neurotrophin mimetics with antagonistic and eventually agonist action may contribute to therapeutic strategies for central nervous system degeneration and trauma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uninjured rat arteries transduced with an adenoviral vector expressing an active form of transforming growth factor β1 (TGF-β1) developed a cellular and matrix-rich neointima, with cartilaginous metaplasia of the vascular media. Explant cultures of transduced arteries showed that secretion of active TGF-β1 ceased by 4 weeks, the time of maximal intimal thickening. Between 4 and 8 weeks, the cartilaginous metaplasia resolved and the intimal lesions regressed almost completely, in large part because of massive apoptosis. Thus, locally expressed TGF-β1 promotes intimal growth and appears to cause transdifferentiation of vascular smooth muscle cells into chondrocytes. Moreover, TGF-β1 withdrawal is associated with regression of vascular lesions. These data suggest an unexpected plasticity of the adult vascular smooth muscle cell phenotype and provide an etiology for cartilaginous metaplasia of the arterial wall. Our observations may help to reconcile divergent views of the role of TGF-β1 in vascular disease.