207 resultados para Drosophila willistoni subgroup
Resumo:
The Drosophila mutant methuselah (mth) was identified from a screen for single gene mutations that extended average lifespan. Mth mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage. The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family. Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. Here we report the 2.3-Å resolution crystal structure of the Mth extracellular region, revealing a folding topology in which three primarily β-structure-containing domains meet to form a shallow interdomain groove containing a solvent-exposed tryptophan that may represent a ligand binding site. The Mth structure is analyzed in relation to predicted Mth homologs and potential ligand binding features.
Resumo:
The Drosophila homolog of the retinoid X receptor, ultraspiracle (USP), heterodimerizes with the ecdysone receptor (EcR) to form a functional complex that mediates the effects of the steroid molting hormone ecdysone by activating and repressing expression of ecdysone response genes. As with other retinoid X receptor heterodimers, EcR/USP affects gene transcription in a ligand-modulated manner. We used in vivo, cell culture, and biochemical approaches to analyze the functions of two usp alleles, usp3 and usp4, which encode stable proteins with defective DNA-binding domains. We observed that USP is able to activate as well as repress the Z1 isoform of the ecdysone-responsive broad complex (BrC-Z1). Activation of BrC-Z1 as well as EcR, itself an ecdysone response gene, can be mediated by both the USP3 and USP4 mutant proteins. USP3 and USP4 also activate an ecdysone-responsive element, hsp27EcRE, in cultured cells. These results differ from the protein null allele, usp2, which is unable to mediate activation [Schubiger, M. & Truman, J. W. (2000) Development 127, 1151–1159]. BrC-Z1 repression is compromised in all three usp alleles, suggesting that repression involves the association of USP with DNA. Our results distinguish two mechanisms by which USP modulates the properties of EcR: one that involves the USP DNA-binding domain and one that can be achieved solely through the ligand-binding domain. These newly revealed properties of USP might implicate similar properties for retinoid X receptor.
Resumo:
Innate immunity in Drosophila is characterized by the inducible expression of antimicrobial peptides. We have investigated the development and regulation of immune responsiveness in Drosophila embryos after infection. Immune competence, as monitored by the induction of Cecropin A1-lacZ constructs, was observed first in the embryonic yolk. This observation suggests that the yolk plays an important role in the humoral immune response of the developing embryo by synthesizing antimicrobial peptides. Around midembryogenesis, the response in the yolk was diminished. Simultaneously, Cecropin expression became inducible in a large number of cells in the epidermis, demonstrating that late-stage embryos can synthesize their own antibiotics in the epidermis. This production likely serves to provide the hatching larva with an active antimicrobial barrier and protection against systemic infections. Cecropin expression in the yolk required the presence of a GATA site in the promoter as well as the involvement of the GATA-binding transcription factor Serpent (dGATAb). In contrast, neither the GATA site nor Serpent were necessary for Cecropin expression in the epidermis. Thus, the inducible immune responses in the yolk and in the epidermis can be uncoupled and call for distinct sets of transcription factors. Our data suggest that Serpent is involved in the distinction between a systemic response in the yolk/fat body and a local immune response in epithelial cells. In addition, the present study shows that signal transduction pathways controlling innate and epithelial defense reactions can be dissected genetically in Drosophila embryos.
Resumo:
The cuticular hydrocarbon (CH) pheromones in Drosophila melanogaster exhibit strong geographic variation. African and Caribbean populations have a high ratio of 5,9 heptacosadiene/7,11 heptacosadiene (the “High” CH type), whereas populations from all other areas have a low ratio (“Low” CH type). Based on previous genetic mapping, DNA markers were developed that localized the genetic basis of this CH polymorphism to within a 13-kb region. We then carried out a hierarchical search for diagnostic nucleotide sites starting with four lines, and increasing to 24 and 43 lines from a worldwide collection. Within the 13-kb region, only one variable site shows a complete concordance with the CH phenotype. This is a 16-bp deletion in the 5′ region of a desaturase gene (desat2) that was recently suggested to be responsible for the CH polymorphism on the basis of its expression [Dallerac, R., Labeur, C., Jallon, J.-M., Knipple, D. C., Roelofs, W. L. & Wicker-Thomas, C. (2000) Proc. Natl. Acad. Sci. 97, 9449–9454]. The cosmopolitan Low type is derived from the ancestral High type, and DNA sequence variations suggest that the former spread worldwide with the aid of positive selection. Whether this CH variation could be a component of the sexual isolation between Zimbabwe and other cosmopolitan populations remains an interesting and unresolved question.
Resumo:
The homeotic genes controlling segment identity in Drosophila are repressed by the Polycomb group of genes (PcG) and are activated by genes of the trithorax group (trxG). An F1 screen for dominant enhancers of Polycomb yielded a point mutation in the heat shock cognate gene, hsc4, along with mutations corresponding to several known PcG loci. The new mutation is a more potent enhancer of Polycomb phenotypes than an apparent null allele of hsc4 is, although even the null allele occasionally displays homeotic phenotypes associated with the PcG. Previous biochemical results had suggested that HSC4 might interact with BRAHMA, a trxG member. Further analyses now show that there is no physical or genetic interaction between HSC4 and the Brahma complex. HSC4 might be needed for the proper folding of a component of the Polycomb repression complex, or it may be a functional member of that complex.
Resumo:
Bacterial tmRNA mediates a trans-translation reaction, which permits the recycling of stalled ribosomes and probably also contributes to the regulated expression of a subset of genes. Its action results in the addition of a small number of C-terminal amino acids to protein whose synthesis had stalled and these constitute a proteolytic recognition tag for the degradation of these incompletely synthesized proteins. Previous work has identified pseudoknots and stem–loops that are widely conserved in divergent bacteria. In the present work an alignment of tmRNA gene sequences within 13 β-proteobacteria reveals an additional sub-structure specific for this bacterial group. This sub-structure is in pseudoknot Pk2, and consists of one to two additional stem–loop(s) capped by stable GNRA tetraloop(s). Three-dimensional models of tmRNA pseudoknot 2 (Pk2) containing various topological versions of the additional sub-structure suggest that the sub-structures likely point away from the core of the RNA, containing both the tRNA and the mRNA domains. A putative tertiary interaction has also been identified.
Resumo:
D-raf, a Drosophila homolog of the raf proto-oncogene, has diverse functions throughout development and is transcribed in a wide range of tissues, with high levels of expression in the ovary and in association with rapid proliferation. The expression pattern resembles those of S phase genes, which are regulated by E2F transcription factors. In the 5′-flanking region of D-raf, four sequences (E2F sites 1–4) similar to the E2F recognition sequence were found, one of them (E2F site 3) being recognized efficiently by Drosophila E2F (dE2F) in vitro. Transient luciferase expression assays confirmed activation of the D-raf gene promoter by dE2F/dDP. Expression of Draf–lacZ was greatly reduced in embryos homozygous for the dE2F mutation. These results suggest that dE2F is likely to be an important regulator of D-raf transcription.
Resumo:
Mutational and biophysical analysis suggests that an intracellular COOH-terminal domain of the large conductance Ca2+-activated K+ channel (BK channel) contains Ca2+-binding site(s) that are allosterically coupled to channel opening. However the structural basis of Ca2+ binding to BK channels is unknown. To pursue this question, we overexpressed the COOH-terminal 280 residues of the Drosophila slowpoke BK channel (Dslo-C280) as a FLAG- and His6-tagged protein in Escherichia coli. We purified Dslo-C280 in soluble form and used a 45Ca2+-overlay protein blot assay to detect Ca2+ binding. Dslo-C280 exhibits specific binding of 45Ca2+ in comparison with various control proteins and known EF-hand Ca2+-binding proteins. A mutation (D5N5) of Dslo-C280, in which five consecutive Asp residues of the “Ca-bowl” motif are changed to Asn, reduces 45Ca2+-binding activity by 56%. By electrophysiological assay, the corresponding D5N5 mutant of the Drosophila BK channel expressed in HEK293 cells exhibits lower Ca2+ sensitivity for activation and a shift of ≈+80 mV in the midpoint voltage for activation. This effect is associated with a decrease in the Hill coefficient (N) for activation by Ca2+ and a reduction in apparent Ca2+ affinity, suggesting the loss of one Ca2+-binding site per monomer. These results demonstrate a functional correlation between Ca2+ binding to a specific region of the BK protein and Ca2+-dependent activation, thus providing a biochemical approach to study this process.
Resumo:
The discovery that several inherited human diseases are caused by mtDNA depletion has led to an increased interest in the replication and maintenance of mtDNA. We have isolated a new mutant in the lopo (low power) gene from Drosophila melanogaster affecting the mitochondrial single-stranded DNA-binding protein (mtSSB), which is one of the key components in mtDNA replication and maintenance. lopo1 mutants die late in the third instar before completion of metamorphosis because of a failure in cell proliferation. Molecular, histochemical, and physiological experiments show a drastic decrease in mtDNA content that is coupled with the loss of respiration in these mutants. However, the number and morphology of mitochondria are not greatly affected. Immunocytochemical analysis shows that mtSSB is expressed in all tissues but is highly enriched in proliferating tissues and in the developing oocyte. lopo1 is the first mtSSB mutant in higher eukaryotes, and its analysis demonstrates the essential function of this gene in development, providing an excellent model to study mitochondrial biogenesis in animals.
Resumo:
Dorsoventral patterning of the Drosophila embryo is initiated by a ventralizing signal. Production of this signal requires the serine proteases Gastrulation Defective (GD), Snake, and Easter, which genetic studies suggest act sequentially in a cascade that is activated locally in response to a ventral cue provided by the pipe gene. Here, we demonstrate biochemically that GD activates Snake, which in turn activates Easter. We also provide evidence that GD zymogen cleavage is important for triggering this cascade but is not spatially localized by pipe. Our results suggest that a broadly, rather than locally, activated protease cascade produces the ventralizing signal, so a distinct downstream step in this cascade must be spatially regulated to restrict signaling to the ventral side of the embryo.
Resumo:
The genetic variability at six polymorphic loci was examined within a global collection of 502 isolates of subgroup III, serogroup A Neisseria meningitidis. Nine “genoclouds” were identified, consisting of genotypes that were isolated repeatedly plus 48 descendent genotypes that were isolated rarely. These genoclouds have caused three pandemic waves of disease since the mid-1960s, the most recent of which was imported from East Asia to Europe and Africa in the mid-1990s. Many of the genotypes are escape variants, resulting from positive selection that we attribute to herd immunity. Despite positive selection, most escape variants are less fit than their parents and are lost because of competition and bottlenecks during spread from country to country. Competition between fit genotypes results in dramatic changes in population composition over short time periods.
Resumo:
neuralized (neur) is a neurogenic mutant of Drosophila in which many signaling events mediated by the Notch (N) receptor are disrupted. Here, we analyze the role of neur during eye development. Neur is required in a cell-autonomous fashion to restrict R8 and other photoreceptor fates and is involved in lateral inhibition of interommatidial bristles but is not required for induction of the cone cell fate. The latter contrasts with the absolute requirement for Suppressor of Hairless and the Enhancer of split-Complex for cone cell induction. Using gain-of-function experiments, we further demonstrate that ectopic wild-type and truncated Neur proteins can interfere with multiple N-controlled aspects of eye development, including both neur-dependent and neur-independent processes.
Resumo:
In many species, the Y (or W) chromosome carries relatively few functional genes. This observation motivates the null hypothesis that the Y will be a minor contributor to genetic variation for fitness. Previous data and theory supported the null hypothesis, but evidence presented here shows that the Y of Drosophila melanogaster is a major determinant of a male's total fitness, with standing genetic variation estimated to be 68% of that of an entire X/autosome genomic haplotype. Most Y-linked genes are expressed during spermatogenesis, and correspondingly, we found that the Y influences fitness primarily through its effect on a male's reproductive success (sperm competition and/or mating success) rather than his egg-to-adult viability. But the fitness of a Y highly depended on the genetic makeup of its bearer, reverting from high to low in different genetic backgrounds. This pattern leads to large epistatic (inconsistent among backgrounds) but no additive (consistent among backgrounds) Y-linked genetic variance for fitness. On a microevolutionary scale, the observed large epistatic variation on the Y substantially reduces heritable variation for fitness among males, and on a macroevolutionary scale, the Y produces strong selection for genomic rearrangements that move interacting genes onto the nonrecombining region of the Y.