95 resultados para Dimuon triggers
Resumo:
Whole-cell patch-clamp recordings and single-cell Ca2+ measurements were used to study the control of Ca2+ entry through the Ca2+ release-activated Ca2+ influx pathway (ICRAC) in rat basophilic leukemia cells. When intracellular inositol 1,4,5-trisphosphate (InsP3)-sensitive stores were depleted by dialyzing cells with high concentrations of InsP3, ICRAC inactivated only slightly in the absence of ATP. Inclusion of ATP accelerated inactivation 2-fold. The inactivation was increased further by the ATP analogue adenosine 5'-[gamma-thio]triphosphate, which is readily used by protein kinases, but not by 5'-adenylyl imidodiphosphate, another ATP analogue that is not used by kinases. Neither cyclic nucleotides nor inhibition of calmodulin or tyrosine kinase prevented the inactivation. Staurosporine and bisindolylmaleimide, protein kinase C inhibitors, reduced inactivation of ICRAC, whereas phorbol ester accelerated inactivation of the current. These results demonstrate that a protein kinase-mediated phosphorylation, probably through protein kinase C, inactivates ICRAC. Activation of the adenosine receptor (A3 type) in RBL cells did not evoke much Ca2+ influx or systematic activation of ICRAC. After protein kinase C was blocked, however, large ICRAC was observed in all cells and this was accompanied by large Ca2+ influx. The ability of a receptor to evoke Ca2+ entry is determined, at least in part, by protein kinase C. Antigen stimulation, which triggers secretion through a process that requires Ca2+ influx, activated ICRAC. The regulation of ICRAC by protein kinase will therefore have important consequences on cell functioning.
Resumo:
We describe a system of hybrid dysgenesis in Drosophila virilis in which at least four unrelated transposable elements are all mobilized following a dysgenic cross. The data are largely consistent with the superposition of at least three different systems of hybrid dysgenesis, each repressing a different transposable element, which break down following the hybrid cross, possibly because they share a common pathway in the host. The data are also consistent with a mechanism in which mobilization of a single element triggers that of others, perhaps through chromosome breakage. The mobilization of multiple, unrelated elements in hybrid dysgenesis is reminiscent of McClintock's evidence [McClintock, B. (1955) Brookhaven Symp. Biol. 8, 58-74] for simultaneous mobilization of different transposable elements in maize.
Resumo:
Antigen-specific activation of T lymphocytes, via stimulation of the T-cell antigen receptor (TCR) complex, is marked by a rapid and sustained increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). It has been suggested that the second messenger inositol 1,4,5-trisphosphate (IP3) produced after TCR stimulation binds to the IP3 receptor (IP3R), an intracellular Ca(2+)-release channel, and triggers the increase in [Ca2+]i that activates transcription of the gene for T-cell growth factor interleukin 2 (IL-2). However, the role of the IP3R in T-cell signaling and possibly in plasma membrane Ca2+ influx in T cells remains unproven. Stable transfection of T cells (Jurkat) with antisense type 1 IP3R cDNA prevented type 1 IP3R expression, providing a tool for dissecting the role of IP3 signaling during T-cell activation. T cells lacking type 1 IP3R failed to increase [Ca2+]i or produce IL-2 after TCR stimulation. Moreover, depletion of intracellular Ca2+ stores without TCR activation stimulated Ca2+ influx in cells lacking the type 1 IP3R. These results establish that the type 1 IP3R is required for intracellular Ca2+ release that triggers antigen-specific T-cell proliferation but not for plasma membrane Ca2+ influx.
Resumo:
Surface signaling plays a major role in fungal infection. Topographical features of the plant surface and chemicals on the surface can trigger germination of fungal spores and differentiation of the germ tubes into appressoria. Ethylene, the fruit-ripening hormone, triggers germination of conidia, branching of hyphae, and multiple appressoria formation in Colletotrichum, thus allowing fungi to time their infection to coincide with ripening of the host. Genes uniquely expressed during appressoria formation induced by topography and surface chemicals have been isolated. Disruption of some of them has been shown to decrease virulence on the hosts. Penetration of the cuticle by the fungus is assisted by fungal cutinase secreted at the penetration structure of the fungus. Disruption of cutinase gene in Fusarium solani pisi drastically decreased its virulence. Small amounts of cutinase carried by spores of virulent pathogens, upon contact with plant surface, release small amounts of cutin monomers that trigger cutinase gene expression. The promoter elements involved in this process in F. solani pisi were identified, and transcription factors that bind these elements were cloned. One of them, cutinase transcription factor 1, expressed in Escherichia coli, is phosphorylated. Several protein kinases from F. solani pisi were cloned. The kinase involved in phosphorylation of specific transcription factors and the precise role of phosphorylation in regulating cutinase gene transcription remain to be elucidated.
Resumo:
We have previously shown that estradiol treatment of roosters resulted in a rapid loss of binding activity of the repressor MDBP-2-H1 (a member of the histone H1 family) to methylated DNA that was not due to a decrease in MDBP-2-H1 concentration. Here we demonstrate that MDBP-2-H1 from rooster liver nuclear extracts is a phosphoprotein. Phosphoamino acid analysis reveals that the phosphorylation occurs exclusively on serine residues. Two-dimensional gel electrophoresis and tryptic phosphopeptide analysis show that MDBP-2-H1 is phosphorylated at several sites. Treatment of roosters with estradiol triggers a dephosphorylation of at least two sites in the protein. Phosphatase treatment of purified rooster MDBP-2-H1 combined with gel mobility shift assay indicates that phosphorylation of MDBP-2-H1 is essential for the binding to methylated DNA and that the dephosphorylation can occur on the protein bound to methylated DNA causing its release from DNA. Thus, these results suggest that in vivo modification of the phosphorylation status of MDBP-2-H1 caused by estradiol treatment may be a key step for the down regulation of its binding to methylated DNA.