151 resultados para Crossing experiments, Baculoviridae, Yeast Two-Hybrid System, Resistance management, sex-linkage


Relevância:

100.00% 100.00%

Publicador:

Resumo:

STATs are activated by tyrosine phosphorylation on cytokine stimulation. A tyrosine-phosphorylated STAT forms a functional dimer through reciprocal Src homology 2 domain (SH2)–phosphotyrosyl peptide interactions. IFN treatment induces the association of PIAS1 and Stat1, which results in the inhibition of Stat1-mediated gene activation. The molecular basis of the cytokine-dependent PIAS1–Stat1 interaction has not been understood. We report here that a region near the COOH terminus of PIAS1 (amino acids 392–541) directly interacts with the NH2-terminal domain of Stat1 (amino acids 1–191). A mutant PIAS1 lacking the Stat1-interacting domain failed to inhibit Stat1-mediated gene activation. By using a modified yeast two-hybrid assay, we demonstrated that PIAS1 specifically interacts with the Stat1 dimer, but not tyrosine-phosphorylated or -unphosphorylated Stat1 monomer. In addition, whereas the NH2-terminal region of PIAS1 does not interact with Stat1, it serves as a modulatory domain by preventing the interaction of the COOH-terminal domain of PIAS1 with the Stat1 monomer. Thus, the cytokine-induced PIAS1–Stat1 interaction is mediated through the specific recognition of the dimeric form of Stat1 by PIAS1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational methods can frequently identify protein-interaction motifs in otherwise uncharacterized open reading frames. However, the identification of candidate ligands for these motifs (e.g., so that partnering can be determined experimentally in a directed manner) is often beyond the scope of current computational capabilities. One exception is provided by the coiled-coil interaction motif, which consists of two or more α helices that wrap around each other: the ligands for coiled-coil sequences are generally other coiled-coil sequences, thereby greatly simplifying the motif/ligand recognition problem. Here, we describe a two-step approach to identifying protein–protein interactions mediated by two-stranded coiled coils that occur in Saccharomyces cerevisiae. Coiled coils from the yeast genome are first predicted computationally, by using the multicoil program, and associations between coiled coils are then determined experimentally by using the yeast two-hybrid assay. We report 213 unique interactions between 162 putative coiled-coil sequences. We evaluate the resulting interactions, focusing on associations identified between components of the spindle pole body (the yeast centrosome).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ca2+/calmodulin-dependent protein kinase II (CaM-KII) regulates numerous physiological functions, including neuronal synaptic plasticity through the phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. To identify proteins that may interact with and modulate CaM-KII function, a yeast two-hybrid screen was performed by using a rat brain cDNA library. This screen identified a unique clone of 1.4 kb, which encoded a 79-aa brain-specific protein that bound the catalytic domain of CaM-KII α and β and potently inhibited kinase activity with an IC50 of 50 nM. The inhibitory protein (CaM-KIIN), and a 28-residue peptide derived from it (CaM-KIINtide), was highly selective for inhibition of CaM-KII with little effect on CaM-KI, CaM-KIV, CaM-KK, protein kinase A, or protein kinase C. CaM-KIIN interacted only with activated CaM-KII (i.e., in the presence of Ca2+/CaM or after autophosphorylation) by using glutathione S-transferase/CaM-KIIN precipitations as well as coimmunoprecipitations from rat brain extracts or from HEK293 cells cotransfected with both constructs. Colocalization of CaM-KIIN with activated CaM-KII was demonstrated in COS-7 cells transfected with green fluorescent protein fused to CaM-KIIN. In COS-7 cells phosphorylation of transfected α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors by CaM-KII, but not by protein kinase C, was blocked upon cotransfection with CaM-KIIN. These results characterize a potent and specific cellular inhibitor of CaM-KII that may have an important role in the physiological regulation of this key protein kinase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA replication of phage-plasmid P4 in its host Escherichia coli depends on its replication protein α. In the plasmid state, P4 copy number is controlled by the regulator protein Cnr (copy number regulation). Mutations in α (αcr) that prevent regulation by Cnr cause P4 over-replication and cell death. Using the two-hybrid system in Saccharomyces cerevisiae and a system based on λ immunity in E.coli for in vivo detection of protein–protein interactions, we found that: (i) α protein interacts with Cnr, whereas αcr proteins do not; (ii) both α–α and αcr–αcr interactions occur and the interaction domain is located within the C-terminal of α; (iii) Cnr–Cnr interaction also occurs. Using an in vivo competition assay, we found that Cnr interferes with both α–α and αcr–αcr dimerization. Our data suggest that Cnr and α interact in at least two ways, which may have different functional roles in P4 replication control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor α (PPARα) is a key regulator of lipid homeostasis in hepatocytes and target for fatty acids and hypolipidemic drugs. How these signaling molecules reach the nuclear receptor is not known; however, similarities in ligand specificity suggest the liver fatty acid binding protein (L-FABP) as a possible candidate. In localization studies using laser-scanning microscopy, we show that L-FABP and PPARα colocalize in the nucleus of mouse primary hepatocytes. Furthermore, we demonstrate by pull-down assay and immunocoprecipitation that L-FABP interacts directly with PPARα. In a cell biological approach with the aid of a mammalian two-hybrid system, we provide evidence that L-FABP interacts with PPARα and PPARγ but not with PPARβ and retinoid X receptor-α by protein–protein contacts. In addition, we demonstrate that the observed interaction of both proteins is independent of ligand binding. Final and quantitative proof for L-FABP mediation was obtained in transactivation assays upon incubation of transiently and stably transfected HepG2 cells with saturated, monounsaturated, and polyunsaturated fatty acids as well as with hypolipidemic drugs. With all ligands applied, we observed strict correlation of PPARα and PPARγ transactivation with intracellular concentrations of L-FABP. This correlation constitutes a nucleus-directed signaling by fatty acids and hypolipidemic drugs where L-FABP acts as a cytosolic gateway for these PPARα and PPARγ agonists. Thus, L-FABP and the respective PPARs could serve as targets for nutrients and drugs to affect expression of PPAR-sensitive genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We cloned cDNA encoding chicken cytoplasmic histone acetyltransferase-1, chHAT-1, comprising 408 amino acids including a putative initiation Met. It exhibits 80.4% identity to the human homolog and possesses a typical leucine zipper motif. The glutathione S-transferase (GST) pull-down assay, involving truncated and missense mutants of the chicken chromatin assembly factor-1 (chCAF-1)p48, revealed not only that a region (comprising amino acids 376–405 of chCAF-1p48 and containing the seventh WD dipeptide motif) binds to chHAT-1 in vitro, but also that mutation of the motif has no influence on the in vitro interaction. The GST pull-down assay, involving truncated and missense chHAT-1 mutants, established that a region, comprising amino acids 380–408 of chHAT-1 and containing the leucine zipper motif, is required for its in vitro interaction with chCAF-1p48. In addition, mutation of each of four Leu residues in the leucine zipper motif prevents the in vitro interaction. The yeast two-hybrid assay revealed that all four Leu residues within the leucine zipper motif of chHAT-1 are necessary for its in vivo interaction with chCAF-1p48. These results indicate not only that the proper leucine zipper motif of chHAT-1 is essential for its interaction with chCAF-1p48, but also that the propeller structure of chCAF-1p48 expected to act as a platform for protein–protein interactions may not be necessary for this interaction of chHAT-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential compartmentalization of signaling molecules in cells and tissues is being recognized as an important mechanism for regulating the specificity of signal transduction pathways. A kinase anchoring proteins (AKAPs) direct the subcellular localization of protein kinase A (PKA) by binding to its regulatory (R) subunits. Dual specific AKAPs (D-AKAPs) interact with both RI and RII. A 372-residue fragment of mouse D-AKAP2 with a 40-residue C-terminal PKA binding region and a putative regulator of G protein signaling (RGS) domain was previously identified by means of a yeast two-hybrid screen. Here, we report the cloning of full-length human D-AKAP2 (662 residues) with an additional putative RGS domain, and the corresponding mouse protein less the first two exons (617 residues). Expression of D-AKAP2 was characterized by using mouse tissue extracts. Full-length D-AKAP2 from various tissues shows different molecular weights, possibly because of alternative splicing or posttranslational modifications. The cloned human gene product has a molecular weight similar to one of the prominent mouse proteins. In vivo association of D-AKAP2 with PKA in mouse brain was demonstrated by using cAMP agarose pull-down assay. Subcellular localization for endogenous mouse, rat, and human D-AKAP2 was determined by immunocytochemistry, immunohistochemistry, and tissue fractionation. D-AKAP2 from all three species is highly enriched in mitochondria. The mitochondrial localization and the presence of RGS domains in D-AKAP2 may have important implications for its function in PKA and G protein signal transduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria are dynamic organelles that undergo frequent division and fusion, but the molecular mechanisms of these two events are not well understood. Dnm1p, a mitochondria-associated, dynamin-related GTPase was previously shown to mediate mitochondrial fission. Recently, a genome-wide yeast two-hybrid screen identified an uncharacterized protein that interacts with Dnm1p. Cells disrupted in this new gene, which we call NET2, contain a single mitochondrion that consists of a network formed by interconnected tubules, similar to the phenotype of dnm1Δ cells. NET2 encodes a mitochondria-associated protein with a predicted coiled-coil region and six WD-40 repeats. Immunofluorescence microscopy indicates that Net2p is located in distinct, dot-like structures along the mitochondrial surface, many of which colocalize with the Dnm1 protein. Fluorescence and immunoelectron microscopy shows that Dnm1p and Net2p preferentially colocalize at constriction sites along mitochondrial tubules. Our results suggest that Net2p is a new component of the mitochondrial division machinery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vsx-1 is a paired-like:CVC homeobox gene whose expression is linked to bipolar cell differentiation during zebrafish retinogenesis. We used a yeast two-hybrid screen to identify proteins interacting with Vsx-1 and isolated Ubc9, an enzyme that conjugates the small ubiquitin-like modifier SUMO-1. Despite its interaction with Ubc9, we show that Vsx-1 is not a substrate for SUMO-1 in COS-7 cells or in vitro. When a yeast two-hybrid assay is used, deletion analysis of the interacting domain on Vsx-1 shows that Ubc9 binds to a nuclear localization signal (NLS) at the NH2 terminus of the homeodomain. In SW13 cells, Vsx-1 localizes to the nucleus and is excluded from nucleoli. Deletion of the NLS disrupts this nuclear localization, resulting in a diffuse cytoplasmic distribution of Vsx-1. In SW13 AK1 cells that express low levels of endogenous Ubc9, Vsx-1 accumulates in a perinuclear ring and colocalizes with an endoplasmic reticulum marker. However, NLS-tagged STAT1 protein exhibits normal nuclear localization in both SW13 and SW13 AK1 cells, suggesting that nuclear import is not globally disrupted. Cotransfection of Vsx-1 with Ubc9 restores Vsx-1 nuclear localization in SW3 AK1 cells and demonstrates that Ubc9 is required for the nuclear localization of Vsx-1. Ubc9 continues to restore nuclear localization even after a C93S active site mutation has eliminated its SUMO-1-conjugating ability. These results suggest that Ubc9 mediates the nuclear localization of Vsx-1, and possibly other proteins, through a nonenzymatic mechanism that is independent of SUMO-1 conjugation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Opitz syndrome (OS) is a human genetic disease characterized by deformities such as cleft palate that are attributable to defects in embryonic development at the midline. Gene mapping has identified OS mutations within a protein called Mid1. Wild-type Mid1 predominantly colocalizes with microtubules, in contrast to mutant versions of Mid1 that appear clustered in the cytosol. Using yeast two-hybrid screening, we found that the α4-subunit of protein phosphatases 2A/4/6 binds Mid1. Epitope-tagged α4 coimmunoprecipitated endogenous or coexpressed Mid1 from COS7 cells, and this required only the conserved C-terminal region of α4. Localization of Mid1 and α4 was influenced by one another in transiently transfected cells. Mid1 could recruit α4 onto microtubules, and high levels of α4 could displace Mid1 into the cytosol. Metabolic 32P labeling of cells showed that Mid1 is a phosphoprotein, and coexpression of full-length α4 decreased Mid1 phosphorylation, indicative of a functional interaction. Association of green fluorescent protein–Mid1 with microtubules in living cells was perturbed by inhibitors of MAP kinase activation. The conclusion is that Mid1 association with microtubules, which seems important for normal midline development, is regulated by dynamic phosphorylation involving MAP kinase and protein phosphatase that is targeted specifically to Mid1 by α4. Human birth defects may result from environmental or genetic disruption of this regulatory cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethylene-responsive element-binding proteins (EREBPs) of tobacco (Nicotiana tabacum L.) bind to the GCC box of many pathogenesis-related (PR) gene promoters, including osmotin (PR-5). The two GCC boxes on the osmotin promoter are known to be required, but not sufficient, for maximal ethylene responsiveness. EREBPs participate in the signal transduction pathway leading from exogenous ethylene application and pathogen infection to PR gene induction. In this study EREBP3 was used as bait in a yeast two-hybrid interaction trap with a tobacco cDNA library as prey to isolate signal transduction pathway intermediates that interact with EREBPs. One of the strongest interactors was found to encode a nitrilase-like protein (NLP). Nitrilase is an enzyme involved in auxin biosynthesis. NLP interacted with other EREBP family members, namely tobacco EREBP2 and tomato (Lycopersicon esculentum L.) Pti4/5/6. The EREBP2-EREBP3 interaction with NLP required part of the DNA-binding domain. The specificity of interaction was further confirmed by protein-binding studies in solution. We propose that the EREBP-NLP interaction serves to regulate PR gene expression by sequestration of EREBPs in the cytoplasm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ubiquitination appears to be involved in virus particle release from infected cells. Free ubiquitin (Ub), as well as Ub covalently bound to a small fraction of p6 Gag, is detected in mature HIV particles. Here we report that the p6 region in the Pr55Gag structural precursor polyprotein binds to Tsg101, a putative Ub regulator that is involved in trafficking of plasma membrane-associated proteins. Tsg101 was found to interact with Gag in (i) a yeast two-hybrid assay, (ii) in vitro coimmunoprecipitation by using purified Pr55Gag and rabbit reticulocyte lysate-synthesized Tsg101, and (iii) in vivo in the cytoplasm of COS cells transfected with gag. The PTAPP motif [or late (L) domain] within p6, which is required for release of mature virus from the plasma membrane, was the determinant for binding Pr55Gag. The N-terminal region in Tsg101, which is homologous to the Ubc4 class of Ub-conjugating (E2) enzymes, was the determinant of interaction with p6. Mutation of Tyr-110 in Tsg101, present in place of the active-site Cys that binds Ub in E2 enzymes, and other residues unique to Tsg101, impaired p6 interaction, indicating that features that distinguish Tsg101 from active E2 enzymes were important for binding the viral protein. The results link L-domain function in HIV to the Ub machinery and a specific component of the cellular trafficking apparatus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have cloned a fusion partner of the MLL gene at 11q23 and identified it as the gene encoding the human formin-binding protein 17, FBP17. It maps to chromosome 9q34 centromeric to ABL. The gene fusion results from a complex chromosome rearrangement that was resolved by fluorescence in situ hybridization with various probes on chromosomes 9 and 11 as an ins(11;9)(q23;q34)inv(11)(q13q23). The rearrangement resulted in a 5′-MLL/FBP17-3′ fusion mRNA. We retrovirally transduced murine-myeloid progenitor cells with MLL/FBP17 to test its transforming ability. In contrast to MLL/ENL, MLL/ELL and other MLL-fusion genes, MLL/FBP17 did not give a positive readout in a serial replating assay. Therefore, we assume that additional cooperating genetic abnormalities might be needed to establish a full malignant phenotype. FBP17 consists of a C-terminal Src homology 3 domain and an N-terminal region that is homologous to the cell division cycle protein, cdc15, a regulator of the actin cytoskeleton in Schizosaccharomyces pombe. Both domains are separated by a consensus Rho-binding motif that has been identified in different Rho-interaction partners such as Rhotekin and Rhophilin. We evaluated whether FBP17 and members of the Rho family interact in vivo with a yeast two-hybrid assay. None of the various Rho proteins tested, however, interacted with FBP17. We screened a human kidney library and identified a sorting nexin, SNX2, as a protein interaction partner of FBP17. These data provide a link between the epidermal growth factor receptor pathway and an MLL fusion protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a search for regulatory proteins that interact with the leucine zipper motif of c-Fos in the yeast two-hybrid screen, we have identified a protein (FZA-B) that has extensive sequence similarity to SUG1 of Saccharomyces cerevisiae. Here we show that FZA-B can functionally substitute for SUG1 in yeast and that FZA-B interacts with Fos proteins in vitro through their leucine zippers. In rat liver and in HeLa cells, FZA-B is present in the 26S proteasome complex, as is c-Fos. Immobilized antibody raised against an FZA-B-specific peptide depleted peptidase activity, proteasomal proteins, FZA-B, and c-Fos from a 26S proteasome preparation. FZA-B is found predominantly in the nuclear fraction of COS cells expressing an FZA-B transgene and in the nuclear 26S proteasome of HeLa cells. We conclude that FZA-B is the mammalian homolog of SUG1 (mSug1) and that it is present in the nuclear 26S proteasome of cells. Our results suggest that mSug1 may be involved in the degradation of c-Fos and other transcription factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although transcription and pre-mRNA processing are colocalized in eukaryotic nuclei, molecules linking these processes have not previously been described. We have identified four novel rat proteins by their ability to interact with the repetitive C-terminal domain (CTD) of RNA polymerase II in a yeast two-hybrid assay. A yeast homolog of one of the rat proteins has also been shown to interact with the CTD. These CTD-binding proteins are all similar to the SR (serine/arginine-rich) family of proteins that have been shown to be involved in constitutive and regulated splicing. In addition to alternating Ser-Arg domains, these proteins each contain discrete N-terminal or C-terminal CTD-binding domains. We have identified SR-related proteins in a complex that can be immunoprecipitated from nuclear extracts with antibodies directed against RNA polymerase II. In addition, in vitro splicing is inhibited either by an antibody directed against the CTD or by wild-type but not mutant CTD peptides. Thus, these results suggest that the CTD and a set of CTD-binding proteins may act to physically and functionally link transcription and pre-mRNA processing.