117 resultados para Coexpression
Resumo:
The c-myc oncogene has been shown to play a role in cell proliferation and apoptosis. The realization that myc oncogenes may control the level of expression of other genes has opened the field to search for genetic targets for Myc regulation. Recently, using a subtraction/coexpression strategy, a murine genetic target for Myc regulation, called EC439, was isolated. To further characterize the ECA39 gene, we set out to determine the evolutionary conservation of its regulatory and coding sequences. We describe the human, nematode, and budding yeast homologs of the mouse ECA39 gene. Identities between the mouse ECA39 protein and the human, nematode, or yeast proteins are 79%, 52%, and 49%, respectively. Interestingly, the recognition site for Myc binding, located 3' to the start site of transcription in the mouse gene, is also conserved in the human homolog. This regulatory element is missing in the ECA39 homologs from nematode or yeast, which also lack the regulator c-myc. To understand the function of ECA39, we deleted the gene from the yeast genome. Disruption of ECA39 which is a recessive mutation that leads to a marked alteration in the cell cycle. Mutant haploids and homozygous diploids have a faster growth rate than isogenic wild-type strains. Fluorescence-activated cell sorter analyses indicate that the mutation shortens the G1 stage in the cell cycle. Moreover, mutant strains show higher rates of UV-induced mutations. The results suggest that the product of ECA39 is involved in the regulation of G1 to S transition.
Resumo:
One of the fundamental questions concerning expression and function of dimeric enzymes involves the impact of naturally occurring mutations on subunit assembly and heterodimer activity. This question is of particular interest for the human enzyme galactose-l-phosphate uridylyl-transferase (GALT), impairment of which results in the inherited metabolic disorder galactosemia, because many if not most patients studied to date are compound heterozygotes rather than true molecular homozygotes. Furthermore, the broad range of phenotypic severity observed in these patients raises the possibility that allelic combination, not just allelic constitution, may play some role in determining outcome. In the work described herein, we have selected two distinct naturally occurring null mutations of GALT, Q188R and R333W, and asked the questions (i) what are the impacts of these mutations on subunit assembly, and (ii) if heterodimers do form, are they active? To answer these questions, we have established a yeast system for the coexpression of epitope-tagged alleles of human GALT and investigated both the extent of specific GALT subunit interactions and the activity of defined heterodimer pools. We have found that both homodimers and heterodimers do form involving each of the mutant subunits tested and that both heterodimer pools retain substantial enzymatic activity. These results are significant not only in terms of their implications for furthering our understanding of galactosemia and GALT holoenzyme structure-function relationships but also because the system described may serve as a model for similar studies of other complexes composed of multiple subunits.
Resumo:
There is a need for more effective therapy for chronic virus infections. A principle natural mechanism for elimination of virus-infected host cells is activation of viral antigen-specific cytotoxic T lymphocytes (CTL). In an effort to develop methods of inducing virus-specific CTL responses that might be utilized in therapy of virus infections, we have investigated the effect of B7, a costimulatory factor for T-cell activation. In this study we show that delivery of genes encoding human B7-1 and a viral antigen in the same recombinant viral vector to cells of mice induces a greater viral antigen-specific CTL response than does similar delivery of the viral antigen gene alone. Two recombinant adenovirus vectors were constructed with the foreign genes inserted in the early region 3. One of them (Ad1312) directed expression of the surface antigen gene of hepatitis B virus (HBS); the other (Ad1310) directed coexpression of HBS and human B7-1 (CD80) by means of an internal ribosomal entry site placed between the two coding sequences. When inoculated into BALB/c mice, both vectors induced a viral surface antigen-specific CTL response. The response induced by Ad1310 was stronger than that by Adl312 as measured by a chromium release assay for CTL activity and limiting dilution analysis for CTL precursor frequency, indicating that the B7-1 gene co-delivered with the HBS gene had an enhancing effect on the CTL response against surface antigen. Ad1310 also induced a higher titer of antibody against surface antigen than did Ad1312. This result suggests that expression of a costimulatory protein and a viral antigen in the same cells in vivo induces stronger immune responses than expression of the antigen alone. This could be a novel strategy for development of both preventive and therapeutic vaccines against infectious agents.
Resumo:
The eukaryotic convertase family plays an important role in posttranslational proteolytic processing and activation of many pro- and polypeptides that have at their cleavage sites the paired basic motif, RX(K/R)R. Recent studies have revealed that the cleavage site of insect pro-vitellogenins (pro-Vg) also contains this motif. To identify and characterize the insect pro-Vg processing enzyme, Vg convertase (VC), its cDNA was cloned from a vitellogenic female fat body cDNA library of the mosquito, Aedes aegypti. The 3735-bp-long VC cDNA has an open reading frame encoding a 115-kDa protein. In vitro transcription/translation of VC cDNA revealed that this 115-kDa protein becomes 140 kDa after co- and posttranslational modifications. The VC deduced amino acid sequence has high similarity to and a domain structure characteristic of furin-like convertases. Northern blot analysis showed that a single 4.2-kb transcript was expressed in the fat body during the first 18 hr of the Vg synthetic period. Coexpression of VC cDNA with mosquito Vg cDNA resulted in correct cleavage of pro-Vg. Thus, this newly identified convertase is, indeed, a functional fat body-specific enzyme for pro-Vg cleavage.
Resumo:
The yeast two-hybrid system was used to isolate a clone from a 17-day-old mouse embryo cDNA library that codes for a novel 812-aa long protein fragment, glucocorticoid receptor-interacting protein 1 (GRIP1), that can interact with the hormone binding domain (HBD) of the glucocorticoid receptor. In the yeast two-hybrid system and in vitro, GRIP1 interacted with the HBDs of the glucocorticoid, estrogen, and androgen receptors in a hormone-regulated manner. When fused to the DNA binding domain of a heterologous protein, the GRIP1 fragment activated a reporter gene containing a suitable enhancer site in yeast cells and in mammalian cells, indicating that GRIP1 contains a transcriptional activation domain. Overexpression of the GRIP1 fragment in mammalian cells interfered with hormone-regulated expression of mouse mammary tumor virus-chloramphenicol acetyltransferase gene and constitutive expression of cytomegalovirus-beta-galactosidase reporter gene, but not constitutive expression from a tRNA gene promoter. This selective squelching activity suggests that GRIM can interact with an essential component of the RNA polymerase II transcription machinery. Finally, while a steroid receptor HBD fused with a GAL4 DNA binding domain did not, by itself, activate transcription of a reporter gene in yeast, coexpression of this fusion protein with GRIP1 strongly activated the reporter gene. Thus, in yeast, GRIP1 can serve as a coactivator, potentiating the transactivation functions in steroid receptor HBDs, possibly by acting as a bridge between HBDs of the receptors and the basal transcription machinery.
Resumo:
The potential functional significance of human 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] receptor (hVDR) phosphorylation at Ser-208 was evaluated by cotransfecting COS-7 kidney cells with hVDR constructs and the catalytic subunit of human casein kinase 11 (CK-11). Under these conditions, hVDR is intensely phosphorylated in a reaction that depends on both CK-II and the presence of Ser-208. The resulting hyperphosphorylated receptor is unaltered in its kinetics for binding the 1,25(OH)2D3 ligand, its partitioning into the nucleus, and its ability to associate with a vitamin D responsive element. Replacement of Ser-208 with glycine or alanine indicates that phosphorylation of hVDR at Ser-208 is not obligatory for 1,25(OH)2D3 action, but coexpression of wild-type hVDR and CK-11 elicits a dose-dependent enhancement of 1,25(OH)2D3-stimulated transcription of a vitamin D responsive element reporter construct. This enhancement by CK-II is abolished by mutating Ser-208 to glycine or alanine and does not occur with glucocorticoid receptor-mediated transcription. Therefore, phosphorylation of hVDR by CK-11 at Ser-208 specifically modulates its transcriptional capacity, suggesting that this covalent modification alters the conformation of VDR to potentiate its interaction with the machinery for DNA transcription.
Resumo:
Paramecium tetraurelia stock 51 can express at least 11 different types of surface antigens, yet only a single type is expressed on the surface of an individual cell at any one time. The differential expression of stock 51 type A and B surface antigen genes (51A and 51B) is regulated at the level of transcription. Previously, we reported that nucleotide sequences upstream of position -26 (relative to the start of translation) in the 51A and 51B surface antigen genes are necessary for transcriptional activity but are not sufficient to direct differential transcriptional control. In this report we demonstrate that at least some of the critical elements necessary for differential transcription of the 51A and 51B genes lie within the 5' coding region. A hybrid gene that contains 51B upstream sequences (-475 to +1) attached to the ATG start codon of 51A is not cotranscribed with the 51B gene. In contrast, further substitution with 51B sequences (-1647 to +885) allows the chimeric gene to be coexpressed with 51B. A different hybrid gene containing a substitution of 51B sequence from -26 to +885 in the 51A gene is also coexpressed with 51B, revealing that the critical elements within the coding region of 51B do not require 51B upstream sequences for their effect. Coinjection of the 51A gene with the chimeric gene that contains 51B up to +885 showed that the same sequences that allow coexpression with 51B prevent cotranscription with 51A. Together, these results demonstrate that a region downstream of the transcriptional start site between nucleotide positions +1 and +885 (relative to translational start) is necessary to control differential transcriptional activity.
Resumo:
Sterol-regulated transcription of the gene for rat farnesyl diphosphate (FPP) synthase (geranyl-diphosphate:isopentenyl-diphosphate geranyltranstransferase, EC 2.5.1.10) is dependent in part on the binding of the ubiquitous transcription factor NF-Y to a 6-bp element within the proximal promoter. Current studies identify a second element in this promoter that is also required for sterol-regulated transcription in vivo. Mutation of three nucleotides (CAC) within this element blocks the 8-fold induction of FPP synthase promoter-reporter genes that normally occurs when the transfected cells are incubated in medium deprived of sterols. Gel mobility-shift assays demonstrate that the transcriptionally active 68-kDa fragment of the sterol regulatory element (SRE-1)-binding protein assays (SREBP-1) binds to an oligonucleotide containing the wild-type sequence but not to an oligonucleotide in which the CAC has been mutated. DNase 1 protection pattern (footprint) analysis indicates that SREBP-1 binds to nucleotides that include the CAC. Both the in vivo and in vitro assays are affected by mutagenesis of nucleotides adjacent to the CAC. Coexpression of SREBP with a wild-type FPP synthase promoter-reporter gene in CV-1 cells results in very high levels of reporter activity that is sterol-independent. In contrast, the reporter activity remained low when the promoter contained a mutation in the CAC trinucleotide. We conclude that sterol-regulated transcription of FPP synthase is controlled in part by the interaction of SREBP with a binding site that we have termed SRE-3. Identification of this element may prove useful in the identification of other genes that are both regulated by SREBP and involved in lipid biosynthesis.
Resumo:
RNA synthesis by the paramyxovirus respiratory syncytial virus, a ubiquitous human pathogen, was found to be more complex than previously appreciated for the nonsegmented negative-strand RNA viruses. Intracellular RNA replication of a plasmid-encoded "minigenome" analog of viral genomic RNA was directed by coexpression of the N, P, and L proteins. But, under these conditions, the greater part of mRNA synthesis terminated prematurely. This difference in processivity between the replicase and the transcriptase was unanticipated because the two enzymes ostensively shared the same protein subunits and template. Coexpression of the M2 gene at a low level of input plasmid resulted in the efficient production of full-length mRNA and, in the case of a dicistronic minigenome, sequential transcription. At a higher level, coexpression of the M2 gene inhibited transcription and RNA replication. The M2 mRNA contains two overlapping translational open reading frames (ORFs), which were segregated for further analysis. Expression of the upstream ORF1, which encoded the previously described 22-kDa M2 protein, was associated with transcription elongation. A model involving this protein in the balance between transcription and replication is proposed. ORF2, which lacks an assigned protein, was associated with inhibition of RNA synthesis. We propose that this activity renders nucleocapsids synthetically quiescent prior to incorporation into virions.
Resumo:
The retinal protein Nrl belongs to a distinct subfamily of basic motif-leucine zipper DNA-binding proteins and has been shown to bind extended AP-1-like sequence elements as a homo- or heterodimer. Here, we demonstrate that Nrl can positively regulate the expression of the photoreceptor cell-specific gene rhodopsin. Electrophoretic mobility-shift analysis reveals that a protein(s) in nuclear extracts from bovine retina and the Y79 human retinoblastoma cell line binds to a conserved Nrl response element (NRE) in the upstream promoter region of the rhodopsin gene. Nrl or an antigenically similar protein is shown to be part of the bound protein complex by supershift experiments using Nrl-specific antiserum. Cotransfection studies using an Nrl-expression plasmid and a luciferase reporter gene demonstrate that interaction of the Nrl protein with the -61 to -84 region of the rhodopsin promoter (which includes the NRE) stimulates expression of the reporter gene in CV-1 monkey kidney cells. This Nrl-mediated transactivation is specifically inhibited by coexpression of a naturally occurring truncated form of Nrl (dominant negative effect). Involvement of Nrl in photoreceptor gene regulation and its continued high levels of expression in the adult retina suggest that Nrl plays a significant role in controlling retinal function.
Resumo:
WT1 encodes a zinc-finger protein, expressed as distinct isoforms, that is inactivated in a subset of Wilms tumors. Both constitutional and somatic mutations disrupting the DNA-binding domain of WT1 result in a potentially dominant-negative phenotype. In generating inducible cell lines expressing wild-type isoforms of WT1 and WT1 mutants, we observed dramatic differences in the subnuclear localization of the induced proteins. The WT1 isoform that binds with high affinity to a defined DNA target, WT1(-KTS), was diffusely localized throughout the nucleus. In contrast, expression of an alternative splicing variant with reduced DNA binding affinity, WT1 (+KTS), or WT1 mutants with a disrupted zinc-finger domain resulted in a speckled pattern of expression within the nucleus. Although similar in appearance, the localization of WT1 variants to subnuclear clusters was clearly distinct from that of the essential splicing factor SC35, suggesting that WT1 is not directly involved in pre-mRNA splicing. Localization to subnuclear clusters required the N terminus of WT1, and coexpression of a truncated WT1 mutant and wild-type WT1(-KTS) resulted in their physical association, the redistribution of WT1(-KTS) from a diffuse to a speckled pattern, and the inhibition of its transactivational activity. These observations suggest that different WT1 isoforms and WT1 mutants have distinct subnuclear compartments. Dominant-negative WT1 proteins physically associate with wild-type WT1 in vivo and may result in its sequestration within subnuclear structures.
Resumo:
Infectious human respiratory syncytial virus (RSV) was produced by the intracellular coexpression of five plasmid-borne cDNAs. One cDNA encoded a complete positive-sense version of the RSV genome (corresponding to the replicative intermediate RNA or antigenome), and each of the other four encoded a separate RSV protein, namely, the major nucleocapsid N protein, the nucleocapsid P phosphoprotein, the major polymerase L protein, or the protein from the 5' proximal open reading frame of the M2 mRNA [M2(ORF1)]. RSV was not produced if any of the five plasmids was omitted. The requirement for the M2(ORF1) protein is consistent with its recent identification as a transcription elongation factor and confirms its importance for RSV gene expression. It should thus be possible to introduce defined changes into infectious RSV. This should be useful for basic studies of RSV molecular biology and pathogenesis; in addition, there are immediate applications to the development of live attenuated vaccine strains bearing predetermined defined attenuating mutations.
Resumo:
Each G protein-coupled receptor recognizes only a distinct subset of the many structurally closely related G proteins expressed within a cell. How this selectively is achieved at a molecular level is not well understood, particularly since no specific point-to-point contact sites between a receptor and its cognate G protein(s) have been identified. In this study, we demonstrate that a 4-aa epitope on the m2 muscarinic acetylcholine receptor, a prototypical Gi/o-coupled receptor, can specifically recognize the C-terminal 5 aa of alpha subunits of the Gi/o protein family. The m2 receptor residues involved in this interaction are predicted to be located on one side of an alpha-helical receptor region present at the junction between the third intracellular loop and the sixth transmembrane domain. Coexpression studies with hybrid m2/m3 muscarinic receptors and mutant G-protein alpha q subunits showed that the receptor/G-protein contact site identified in this study is essential for coupling specificity and G-protein activation.
Resumo:
The small GTP-binding proteins Rac and Rho are key elements in the signal-transduction pathways respectively controlling the formation of lamellipodia and stress fibers induced by growth factors or oncogenic Ras. We recently reported that Rac function is necessary for Ras transformation and that expression of constitutively activated Rac1 is sufficient to cause malignant transformation. We now show that, although expression of constitutively activated V14-RhoA in Rat 1 fibroblasts does not cause transformation on its own, it strongly cooperates with constitutively active RafCAAX in focus-formation assays in NIH 3T3 cells. Furthermore, dominant-negative N19-RhoA inhibits focus formation by V12-H-Ras and RafCAAX in NIH 3T3 cells, and stable coexpression of N19-RhoA and V12-H-Ras in Rat1 fibroblasts reverts Ras transformation. Interestingly, stress fiber formation is inhibited in V12-H-Ras lines and restored by coexpression of N19-RhoA. We conclude that Rho drives at least two separate pathways, one that induces stress fiber formation and another one that is important for transformation by oncogenic Ras.
Resumo:
Endoproteolytic processing of the human protein C (HPC) precursor to its mature form involves cleavage of the propeptide after amino acids Lys-2-Arg-1 and removal of a Lys156-Arg157 dipeptide connecting the light and heavy chains. This processing was inefficient in the mammary gland of transgenic mice and pigs. We hypothesized that the protein processing capacity of specific animal organs may be improved by the coexpression of selected processing enzymes. We tested this by targeting expression of the human proprotein processing enzyme, named paired basic amino acid cleaving enzyme (PACE)/furin, or an enzymatically inactive mutant, PACEM, to the mouse mammary gland. In contrast to mice expressing HPC alone, or to HPC/PACEM bigenic mice, coexpression of PACE with HPC resulted in efficient conversion of the precursor to mature protein, with cleavage at the appropriate sites. These results suggest the involvement of PACE in the processing of HPC in vivo and represent an example of the engineering of animal organs into bioreactors with enhanced protein processing capacity.