114 resultados para Acyl-CoA déshydrogénase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pyruvate dehydrogenase complex was partially purified and characterized from etiolated maize (Zea mays L.) shoot mitochondria. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed proteins of 40, 43, 52 to 53, and 62 to 63 kD. Immunoblot analyses identified these proteins as the E1β-, E1α-, E2-, and E3-subunits, respectively. The molecular mass of maize E2 is considerably smaller than that of other plant E2 subunits (76 kD). The activity of the maize mitochondrial complex has a pH optimum of 7.5 and a divalent cation requirement best satisfied by Mg2+. Michaelis constants for the substrates were 47, 3, 77, and 1 μm for pyruvate, coenzyme A (CoA), NAD+, and thiamine pyrophosphate, respectively. The products NADH and acetyl-CoA were competitive inhibitors with respect to NAD+ and CoA, and the inhibition constants were 15 and 47 μm, respectively. The complex was inactivated by phosphorylation and was reactivated after the removal of ATP and the addition of Mg2+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epicuticular wax production was evaluated along the length of expanding leek (Allium porrum L.) leaves to gain insight into the regulation of wax production. Leaf segments from the bottom to the top were analyzed for (a) wax composition and load; (b) microsomal fatty acid elongase, plastidial fatty acid synthase, and acyl-acyl carrier protein (ACP) thioesterase activities; and (c) tissue and cellular morphological changes. The level of total wax, which was low at the bottom, increased 23-fold along the length of the leaf, whereas accumulation of the hentriacontan-16-one increased more than 1000-fold. The onset of wax accumulation was not linked to cell elongation but, rather, occurred several centimeters above the leaf base. Peak microsomal fatty acid elongation activity preceded the onset of wax accumulation, and the maximum fatty acid synthase activity was coincident with the onset. The C16:0- and C18:0-ACP-hydrolyzing activities changed relatively little along the leaf, whereas C18:1-ACP-hydrolyzing activity increased slightly prior to the peak elongase activity. Electron micrographic analyses revealed that wax crystal formation was asynchronous among cells in the initial stages of wax deposition, and morphological changes in the cuticle and cell wall preceded the appearance of wax crystals. These studies demonstrated that wax production and microsomal fatty acid elongation activities were induced within a defined and identifiable region of the expanding leek leaf and provide the foundation for future molecular studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose (Glc) starvation of suspension-cultured carrot (Daucus carota L.) cells resulted in sequential activation of phospholipid catabolic enzymes. Among the assayed enzymes involved in the degradation, phospholipase D (PLD) and lipolytic acyl hydrolase were activated at the early part of starvation, and these activities were followed by β-oxidation and the glyoxylate cycle enzymes in order. The activity of PLD and lipolytic acyl hydrolase was further confirmed by in vivo-labeling experiments. It was demonstrated that Glc added to a medium containing starving cells inhibited the phospholipid catabolic activities, indicating that phospholipid catabolism is negatively regulated by Glc. There was a burst of ethylene production 6 h after starvation. Ethylene added exogeneously to a Glc-sufficient medium activated PLD, indicating that ethylene acts as an element in the signal transduction pathway leading from Glc depletion to PLD activation. Activation of lipid peroxidation, suggestive of cell death, occurred immediately after the decrease of the phospholipid degradation, suggesting that the observed phospholipid catabolic pathway is part of the metabolic strategies by which cells effectively survive under Glc starvation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isotropic 14N-hyperfine coupling constant, a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{o}^{N}}}\end{equation*}\end{document}, of nitroxide spin labels is dependent on the local environmental polarity. The dependence of a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{o}^{N}}}\end{equation*}\end{document} in fluid phospholipid bilayer membranes on the C-atom position, n, of the nitroxide in the sn-2 chain of a spin-labeled diacyl glycerophospholipid therefore determines the transmembrane polarity profile. The polarity variation in phospholipid membranes, with and without equimolar cholesterol, is characterized by a sigmoidal, trough-like profile of the form {1 + exp [(n − no)/λ]}−1, where n = no is the point of maximum gradient, or polarity midpoint, beyond which the free energy of permeation decreases linearly with n, on a characteristic length-scale, λ. Integration over this profile yields a corresponding expression for the permeability barrier to polar solutes. For fluid membranes without cholesterol, no ≈ 8 and λ ≈ 0.5–1 CH2 units, and the permeability barrier introduces an additional diffusive resistance that is equivalent to increasing the effective membrane thickness by 35–80%, depending on the lipid. For membranes containing equimolar cholesterol, no ≈ 9–10, and the total change in polarity is greater than for membranes without cholesterol, increasing the permeability barrier by a factor of 2, whereas the decay length remains similar. The permeation of oxygen into fluid lipid membranes (determined by spin-label relaxation enhancements) displays a profile similar to that of the transmembrane polarity but of opposite sense. For fluid membranes without cholesterol no ≈ 8 and λ ≈ 1 CH2 units, also for oxygen. The permeation profile for polar paramagnetic ion complexes is closer to a single exponential decay, i.e., no lies outside the acyl-chain region of the membrane. These results are relevant not only to the permeation of water and polar solutes into membranes and their permeabilities, but also to depth determinations of site-specifically spin-labeled protein residues by using paramagnetic relaxation agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palmitoyl-protein thioesterase is a lysosomal long-chain fatty acyl hydrolase that removes fatty acyl groups from modified cysteine residues in proteins. Mutations in palmitoyl-protein thioesterase were recently found to cause the neurodegenerative disorder infantile neuronal ceroid lipofuscinosis, a disease characterized by accumulation of amorphous granular deposits in cortical neurons, leading to blindness, seizures, and brain death by the age of three. In the current study, we demonstrate that [35S]cysteine-labeled lipid thioesters accumulate in immortalized lymphoblasts of patients with infantile neuronal ceroid lipofuscinosis. The accumulation in cultured cells is reversed by the addition of recombinant palmitoyl-protein thioesterase that is competent for lysosomal uptake through the mannose-6-phosphate receptor. The [35S]cysteine-labeled lipids are substrates for palmitoyl-protein thioesterase in vitro, and their formation requires prior protein synthesis. These data support a role for palmitoyl-protein thioesterase in the lysosomal degradation of S-acylated proteins and define a major new pathway for the catabolism of acylated proteins in the lysosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant-specific polyketide synthase genes constitute a gene superfamily, including universal chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing) (EC 2.3.1.74)] genes, sporadically distributed stilbene synthase (SS) genes, and atypical, as-yet-uncharacterized CHS-like genes. We have recently isolated from Gerbera hybrida (Asteraceae) an unusual CHS-like gene, GCHS2, which codes for an enzyme with structural and enzymatic properties as well as ontogenetic distribution distinct from both CHS and SS. Here, we show that the GCHS2-like function is encoded in the Gerbera genome by a family of at least three transcriptionally active genes. Conservation within the GCHS2 family was exploited with selective PCR to study the occurrence of GCHS2-like genes in other Asteraceae. Parsimony analysis of the amplified sequences together with CHS-like genes isolated from other taxa of angiosperm subclass Asteridae suggests that GCHS2 has evolved from CHS via a gene duplication event that occurred before the diversification of the Asteraceae. Enzyme activity analysis of proteins produced in vitro indicates that the GCHS2 reaction is a non-SS variant of the CHS reaction, with both different substrate specificity (to benzoyl-CoA) and a truncated catalytic profile. Together with the recent results of Durbin et al. [Durbin, M. L., Learn, G. H., Jr., Huttley, G. A. & Clegg, M. T. (1995) Proc. Natl. Acad. Sci. USA 92, 3338-3342], our study confirms a gene duplication-based model that explains how various related functions have arisen from CHS during plant evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the amyloid hypothesis for the pathogenesis of Alzheimer disease, beta-amyloid peptide (betaA) directly affects neurons, leading to neurodegeneration and tau phosphorylation. In rat hippocampal culture, betaA exposure activates tau protein kinase I/glycogen synthase kinase 3beta (TPKI/GSK-3beta), which phosphorylates tau protein into Alzheimer disease-like forms, resulting in neuronal death. To elucidate the mechanism of betaA-induced neuronal death, we searched for substrates of TPKI/GSK-3beta in a two-hybrid system and identified pyruvate dehydrogenase (PDH), which converts pyruvate to acetyl-CoA in mitochondria. PDH was phosphorylated and inactivated by TPKI/GSK-3beta in vitro and also in betaA-treated hippocampal cultures, resulting in mitochondrial dysfunction, which would contribute to neuronal death. In cholinergic neurons, betaA impaired acetylcholine synthesis without affecting choline acetyltransferase activity, which suggests that PDH is inactivated by betaA-induced TPKI/GSK-3beta. Thus, TPKI/GSK-3beta regulates PDH and participates in energy metabolism and acetylcholine synthesis. These results suggest that TPKI/GSK-3beta plays a key role in the pathogenesis of Alzheimer disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine inhalational anesthetic binding domains on a ligand-gated ion channel, I used halothane direct photoaffinity labeling of the nicotinic acetylcholine receptor (nAChR) in native Torpedo membranes. [14C]Halothane photoaffinity labeling of both the native Torpedo membranes and the isolated nAChR was saturable, with Kd values within the clinically relevant range. All phospholipids were labeled, with greater than 95% of the label in the acyl chain region. Electrophoresis of labeled nAChR demonstrated no significant subunit selectivity for halothane incorporation. Within the alpha-subunit, greater than 90% of label was found in the endoprotease Glu-C digestion fragments which contain the four transmembrane regions, and the pattern was different from that reported for photoactivatable phospholipid binding to the nAChR. Unlabeled halothane reduced labeling more than did isoflurane, suggesting differences in the binding domains for inhalational anesthetics in the nAChR. These data suggest multiple similar binding domains for halothane in the transmembrane region of the nAChR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The association of protein kinase C (PKC) with membranes was found not to be specific for phosphatidyl-L-serine (PS). In particular, a synthetic phospholipid, dansyl-phosphatidylethanolamine, proved to be fully functional in the association of PKC with lipid bilayers and in mediating the interaction of this enzyme with diacylglycerol. Dansyl-phosphatidylethanolamine was also able to activate the enzyme in a Ca2+-dependent fashion. Differences in the ability to bind and activate PKC observed for an array of anionic lipids were not larger than alterations caused by changes in acyl chain composition. Thus, although different lipids interact to different extents with PKC, there are no specific binding sites for the PS headgroup on the enzyme. We found that lipids with a greater tendency to form inverted phases increased the binding of PKC to bilayers. However, these changes in lipid structure cannot be considered separately from the miscibility of lipid components in the membrane. For pairs of lipids with similar acyl chains, the dependence on PS concentration is sigmoidal, while for dissimilar acyl chains there is much less dependence of binding on PS concentration. The results can be explained in terms of differences in the lateral distribution of components in the membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Betidamino acids (a contraction of "beta" position and "amide") are N'-monoacylated (optionally, N'-monoacylated and N-mono- or N,N'-dialkylated) aminoglycine derivatives in which each N'acyl/alkyl group may mimic naturally occurring amino acid side chains or introduce novel functionalities. Betidamino acids are most conveniently generated on solid supports used for the synthesis of peptides by selective acylation of one of the two amino functions of orthogonally protected aminoglycine(s) to generate the side chain either prior to or after the elongation of the main chain. We have used unresolved Nalpha-tert-butyloxycarbonyl-N'alpha-fluorenylmethoxycarbonyl++ + aminoglycine, and Nalpha-(Nalpha-methyl)-tert-butyloxycarbonyl-N'alpha-fluo renylmethoxycarbonyl aminoglycine as the templates for the introduction of betidamino acids in Acyline [Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph(Ac)-D4Aph(A c)-Leu-Ilys-Pro-DAla-NH2, where 2Nal is 2-naphthylalanine, 4Cpa is 4-chlorophenylalanine, 3Pal is 3-pyridylalanine, Aph is 4-aminophenylalanine, and Ilys is Nepsilon-isopropyllysine], a potent gonadotropin-releasing hormone antagonist, in order to test biocompatibility of these derivatives. Diasteremneric peptides could be separated in most cases by reverse-phase HPLC. Biological results indicated small differences in relative potencies (<5-fold) between the D and L nonalkylated betidamino acid-containing Acyline derivatives. Importantly, most betide diastereomers were equipotent with Acyline. In an attempt to correlate structure and observed potency, Ramachandran-type plots were calculated for a series of betidamino acids and their methylated homologs. According to these calculations, betidamino acids have access to a more limited and distinct number of conformational states (including those associated with alpha-helices, beta-sheets, or turn structures), with deeper minima than those observed for natural amino acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To test the utility of green fluorescent protein (GFP) as an in vivo reporter protein when fused to a membrane domain, we made a fusion protein between yeast hydroxymethylglutaryl-CoA reductase and GFP. Fusion proteins displayed spatial localization and regulated degradation consistent with the native hydroxymethylglutaryl-CoA reductase proteins. Thus, GFP should be useful in the study of both membrane protein localization and protein degradation in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conditioning of culture medium by the production of growth-regulatory substances is a well-established phenomenon with eukaryotic cells. It has recently been shown that many prokaryotes are also capable of modulating growth, and in some cases sensing cell density, by production of extracellular signaling molecules, thereby allowing single celled prokaryotes to function in some respects as multicellular organisms. As Escherichia coli shifts from exponential growth to stationary growth, many changes occur, including cell division leading to formation of short minicells and expression of numerous genes not expressed in exponential phase. An understanding of the coordination between the morphological changes associated with cell division and the physiological and metabolic changes is of fundamental importance to understanding regulation of the prokaryotic cell cycle. The ftsQA genes, which encode functions required for cell division in E. coli, are regulated by promoters P1 and P2, located upstream of the ftsQ gene. The P1 promoter is rpoS-stimulated and the second, P2, is regulated by a member of the LuxR subfamily of transcriptional activators, SdiA, exhibiting features characteristic of an autoinduction (quorum sensing) mechanism. The activity of SdiA is potentiated by N-acyl-homoserine lactones, which are the autoinducers of luciferase synthesis in luminous marine bacteria as well as of pathogenesis functions in several pathogenic bacteria. A compound(s) produced by E. coli itself during growth in Luria Broth stimulates transcription from P2 in an SdiA-dependent process. Another substance(s) enhances transcription of rpoS and (perhaps indirectly) of ftsQA via promoter P1. It appears that this bimodal control mechanism may comprise a fail-safe system, such that transcription of the ftsQA genes may be properly regulated under a variety of different environmental and physiological conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe an approach to the synthesis of peptides from segments bearing no protecting groups through an orthogonal coupling method to capture the acyl segment as a thioester that then undergoes an intramolecular acyl transfer to the amine component with formation of a peptide bond. Two orthogonal coupling methods to give the covalent ester intermediate were achieved by either a thiol-thioester exchange mediated by a trialkylphosphine and an alkylthiol or a thioesterification by C alpha-thiocarboxylic acid reacting with a beta-bromo amino acid. With this approach, unprotected segments ranging from 4 to 37 residues were coupled to aqueous solution to give free peptides up to 54 residues long with high efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peroxisome proliferators cause rapid and coordinated transcriptional activation of genes encoding peroxisomal beta-oxidation system enzymes by activating peroxisome proliferator-activated receptor (PPAR) isoform(s). Since the thyroid hormone (T3; 3,3',5-triiodothyronine) receptor (TR), another member of the nuclear hormone receptor superfamily, regulates a subset of fatty acid metabolism genes shared with PPAR, we examined the possibility of interplay between peroxisome proliferator and T3 signaling pathways. T3 inhibited ciprofibrate-induced luciferase activity as well as the endogenous peroxisomal beta-oxidation enzymes in transgenic mice carrying a 3.2-kb 5'-flanking region of the rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase gene fused to the coding region of luciferase. Transfection assays in hepatoma H4-II-E-C3 and CV-1 cells indicated that this inhibition is mediated by TR in a ligand-dependent fashion. Gel shift assays revealed that modulation of PPAR action by TR occurs through titration of limiting amounts of retinoid X receptor (RXR) required for PPAR activation. Increasing amounts of RXR partially reversed the inhibition in a reciprocal manner; PPAR also inhibited TR activation. Results with heterodimerization-deficient TR and PPAR mutants further confirmed that interaction between PPAR and TR signaling systems is indirect. These results suggest that a convergence of the peroxisome proliferator and T3 signaling pathways occurs through their common interaction with the heterodimeric partner RXR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that the phospholipids of the brain cells of fish are altered during cold adaptation. In particular, the 1-monounsaturated 2-polyunsaturated phosphatidylethanolamines (PEs) increase 2- to 3-fold upon adaptation to cold. One of the most striking changes is in the 18:1/22:6 species of PE. We determined how this lipid affected the bilayer-to-hexagonal-phase transition temperature of 16:1/16:1 PE. We found that it was more effective in lowering this transition temperature than were other, less unsaturated, PE species. In addition, it was not simply the presence of the 18:1/22:6 acyl chains which caused this effect, since the 18:1/22:6 species of phosphatidylcholine had the opposite effect on this transition temperature. Zwitterionic substances that lower the bilayer-to-hexagonal-phase transition temperature often cause an increase in the activity of protein kinase C (PKC). Indeed, the 18:1/22:6 PE caused an increase in the rate of histone phosphorylation by PKC which was greater than that caused by other, less unsaturated, PEs. The 18:1/22:6 phosphatidylcholine had no effect on this enzyme. The stimulation of the activity of PKC by the 18:1/22:6 PE is a consequence of this lipid's increasing the partitioning of PKC to the membrane.