93 resultados para Actin Nucleation
Resumo:
A selective polyclonal antibody directed toward the C-terminal decapeptide common to the alpha subunits of Gq and G11 G proteins (G alpha q/G alpha 11) was prepared and used to investigate the subcellular distribution fo these proteins in WRK1 cells, a rat mammary tumor cell line. In immunoblots, the antibody recognized purified G alpha q and G alpha 11 proteins and labeled only two bands corresponding to these alpha subunits. Functional studies indicated that this antibody inhibited vasopressin- and guanosine 5'-[alpha-thio]triphosphate-sensitive phospholipase C activities. Immunofluorescence experiments done with this antibody revealed a filamentous labeling corresponding to intracytoplasmic and perimembranous actin-like filament structures. Colocalization of G alpha q/G alpha 11 and F-actin filaments (F-actin) was demonstrated by double-labeling experiments with anti-G alpha q/G alpha 11 and anti-actin antibodies. Immunoblot analysis of membrane, cytoskeletal, and F-actin-rich fractions confirmed the close association of G alpha q/G alpha 11 with actin. Large amounts of G alpha q/G alpha 11 were recovered in the desmin- and tubulin-free F-actin-rich fraction obtained by a double depolymerization-repolymerization cycle. Disorganization of F-actin filaments with cytochalasin D preserved G alpha q/G alpha 11 and F-actin colocalization but partially inhibited vasopressin- and fluoroaluminate-sensitive phospholipase C activity, suggesting that actin-associated G alpha q/G alpha 11 proteins play a role in signal transduction.
Resumo:
Shigella flexneri is a Gram-negative bacterial pathogen that can grow directly in the cytoplasm of infected host cells and uses a form of actin-based motility for intra- and intercellular spread. Moving intracellular bacteria are associated with a polarized "comet tail" composed of actin filaments. IcsA, a 120-kDa outer membrane protein necessary for actin-based motility, is located at a single pole on the surface of the organism, at the junction with the actin tail. Here, we demonstrate that stable expression of IcsA on the surface of Escherichia coli is sufficient to allow actin-dependent movement of E. coli in cytoplasmic extracts, at rates comparable to the movement of S. flexneri in infected cells. Thus, IcsA is the sole Shigella-specific factor required for actin-based motility. Continuous protein synthesis and polarized distribution of the protein are not necessary for actin tail formation or movement. Listeria monocytogenes is an unrelated bacterial pathogen that exhibits similar actin-based intracytoplasmic motility. Actin filament dynamics in the comet tails associated with the two different organisms are essentially identical, which indicates that they have independently evolved mechanisms to interact with the same components of the host cytoskeleton.
Resumo:
The DNA in a germ-line nucleus (a micronucleus) undergoes extensive processing when it develops into a somatic nucleus (a macronucleus) after cell mating in hypotrichous ciliates. Processing includes destruction of a large amount of spacer DNA between genes and excision of gene-sized molecules from chromosomes. Before processing, micronuclear genes are interrupted by numerous noncoding segments called internal eliminated sequences (IESs). The IESs are excised and destroyed, and the retained macro-nuclear-destined sequences (MDSs) are spliced. MDSs in some micronuclear genes are not in proper order and must be reordered during processing to create functional gene-sized molecules for the macronucleus. Here we report that the micronuclear actin I gene in Oxytricha trifallax WR consists of 10 MDSs and 9 IESs compared to the previously reported 9 MDSs and 8 IESs in the micronuclear actin I gene of Oxytricha nova. The MDSs in the actin I gene are scrambled in a similar pattern in the two species, but the positions of MDS-IES junctions are shifted by up to 14 bp for scrambled and 138 bp for the nonscrambled MDSs. The shifts in MDS-IES junctions create differences in the repeat sequences that are believed to guide MDS splicing. Also, the sizes and sequences of IESs in the micronuclear actin I genes are different in the two Oxytricha species. These observations give insight about the possible origins of IES insertion and MDS scrambling in evolution and show the extraordinary malleability of the germ-line DNA in hypotrichs.