135 resultados para passenger terminal
Resumo:
We have isolated the plasma membrane H+−ATPase in a phosphorylated form from spinach (Spinacia oleracea L.) leaf tissue incubated with fusicoccin, a fungal toxin that induces irreversible binding of 14–3–3 protein to the C terminus of the H+-ATPase, thus activating H+ pumping. We have identified threonine-948, the second residue from the C-terminal end of the H+-ATPase, as the phosphorylated amino acid. Turnover of the phosphate group of phosphothreonine-948 was inhibited by 14–3–3 binding, suggesting that this residue may form part of a binding motif for 14–3–3. This is the first identification to our knowledge of an in vivo phosphorylation site in the plant plasma membrane H+-ATPase.
Resumo:
A new enzyme, rhamnogalacturonan (RG) α-d-galactopyranosyluronohydrolase (RG-galacturonohydrolase), able to release a galacturonic acid residue from the nonreducing end of RG chains but not from homogalacturonan, was purified from an Aspergillus aculeatus enzyme preparation. RG-galacturonohydrolase acted with inversion of anomeric configuration, initially releasing β-d-galactopyranosyluronic acid. The enzyme cleaved smaller RG substrates with the highest catalytic efficiency. A Michaelis constant of 85 μm and a maximum reaction rate of 160 units mg−1 was found toward a linear RG fragment with a degree of polymerization of 6. RG-galacturonohydrolase had a molecular mass of 66 kD, an isoelectric point of 5.12, a pH optimum of 4.0, and a temperature optimum of 50°C. The enzyme was most stable between pH 3.0 and 6.0 (for 24 h at 40°C) and up to 60°C (for 3 h).
Resumo:
Amino-terminal signal sequences target nascent secretory and membrane proteins to the endoplasmic reticulum for translocation. Subsequent interactions between the signal sequence and components of the translocation machinery at the endoplasmic reticulum are thought to be important for the productive engagement of the translocon by the ribosome-nascent chain complex. However, it is not clear whether all signal sequences carry out these posttargeting steps identically, or if there are differences in the interactions directed by one signal sequence versus another. In this study, we find substantial differences in the ability of signal sequences from different substrates to mediate closure of the ribosome–translocon junction early in translocation. We also show that these differences in some cases necessitate functional coordination between the signal sequence and mature domain for faithful translocation. Accordingly, the translocation of some proteins is sensitive to replacement of their signal sequences. In a particularly dramatic example, the topology of the prion protein was found to depend highly on the choice of signal sequence used to direct its translocation. Taken together, our results reveal an unanticipated degree of substrate-specific functionality encoded in N-terminal signal sequences.
Resumo:
Genotoxic stress activation of the tumor suppressor transcription factor p53 involves post-translational C-terminal modifications that increase both protein stability and DNA binding activity. We compared the requirement for p53 protein activation of p53 target sequences in two major p53-regulated genes, p21/WAF1 (encoding a cell cycle inhibitory protein) and Mdm2 (encoding a ubiquitin ligase that targets p53 for proteolytic degradation). The p53 binding site in the proximal p21/WAF1 promoter contains a single p53 binding consensus sequence, while the p53 binding site in the Mdm2 promoter contains two consensus sequences linked by a 17 bp spacer. Binding of recombinant p53 protein to the p21/WAF1 binding site required monoclonal antibody PAb421, which can mimic activating phosphorylation and/or acetylation events at the C-terminus. In contrast, recombinant p53 bound strongly to the Mdm2 binding site in the absence of PAb421 antibody. Separate binding to each consensus sequence of the Mdm2 binding site still required PAb421, indicating that p53 binding was not simply due to greater affinity to the Mdm2 consensus sequences. Linking two p21/WAF1 binding sites with the 17 bp spacer region from the Mdm2 gene eliminated the PAb421 requirement for p53 binding to the p21/WAF1 site. These results suggest a mechanism for regulation of Mdm2 gene transcription that differs from that other p53-induced genes by its lack of a requirement for C-terminal activation of p53 protein. A steady induction of Mdm2 protein would maintain p53 protein at low levels until post-translational modifications following DNA damage increased p53 activity towards other genes, mediating p53 growth inhibitory and apoptotic activities.
Resumo:
Human immunodeficiency virus (HIV)-encoded trans-activator (Tat) acts through the trans-activation response element RNA stem-loop to increase greatly the processivity of RNA polymerase II. Without Tat, transcription originating from the HIV promoter is attenuated. In this study, we demonstrate that transcriptional activation by Tat in vivo and in vitro requires the C-terminal domain (CTD) of RNA polymerase II. In contrast, the CTD is not required for basal transcription and for the formation of short, attenuated transcripts. Thus, trans-activation by Tat resembles enhancer-dependent activation of transcription. These results suggest that effects of Tat on the processivity of RNA polymerase II require proteins that are associated with the CTD and may result in the phosphorylation of the CTD.
Resumo:
Escherichia coli DnaK acts as a molecular chaperone through its ATP-regulated binding and release of polypeptide substrates. Overexpressing a C-terminal fragment (CTF) of DnaK (Gly-384 to Lys-638) containing the polypeptide substrate binding domain is lethal in wild-type E. coli. This dominant-negative phenotype may result from the nonproductive binding of CTF to cellular polypeptide targets of DnaK. Mutations affecting DnaK substrate binding were identified by selecting noncytotoxic CTF mutants followed by in vitro screening. The clustering of such mutations in the three-dimensional structure of CTF suggests the model that loops L1,2 and L4,5 form a rigid core structure critical for interactions with substrate.
Resumo:
DNA-dependent protein kinase (DNA-PK) consists of a heterodimeric protein (Ku) and a large catalytic subunit (DNA-PKcs). The Ku protein has double-stranded DNA end-binding activity that serves to recruit the complex to DNA ends. Despite having serine/threonine protein kinase activity, DNA-PKcs falls into the phosphatidylinositol 3-kinase superfamily. DNA-PK functions in DNA double-strand break repair and V(D)J recombination, and recent evidence has shown that mouse scid cells are defective in DNA-PKcs. In this study we have cloned the cDNA for the carboxyl-terminal region of DNA-PKcs in rodent cells and identified the existence of two differently spliced products in human cells. We show that DNA-PKcs maps to the same chromosomal region as the mouse scid gene. scid cells contain approximately wild-type levels of DNA-PKcs transcripts, whereas the V-3 cell line, which is also defective in DNA-PKcs, contains very reduced transcript levels. Sequence comparison of the carboxyl-terminal region of scid and wild-type mouse cells enabled us to identify a nonsense mutation within a highly conserved region of the gene in mouse scid cells. This represents a strong candidate for the inactivating mutation in DNA-PKcs in the scid mouse.
Resumo:
We have studied the mechanism of accurate in vitro RNA editing of Trypanosoma brucei ATPase 6 mRNA, using four mRNA-guide RNA (gRNA) pairs that specify deletion of 2, 3, or 4 U residues at editing site 1 and mitochondrial extract. This extract not only catalyzes deletion of the specified number of U residues but also exhibits a novel endonuclease activity that cleaves the input pre-mRNA in a gRNA-directed manner, precisely at the phosphodiester bond predicted in a simple enzymatic model of RNA editing. This cleavage site is inconsistent with a chimera-based editing mechanism. The U residues to be deleted, present at the 3' end of the upstream cleavage product, are then removed evidently by a 3' U-specific exonuclease and not by a reverse reaction of terminal U transferase. RNA ligase can then join the mRNA halves through their newly formed 5' P and 3' OH termini, generating mRNA faithfully edited at the first editing site. This resultant, partially edited mRNA can then undergo accurate, gRNA-directed cleavage at editing site 2, again precisely as predicted by the enzymatic editing model. All of these enzymatic activities cofractionate with the U-deletion activity and may reside in a single complex. The data imply that each round of editing is a four-step process, involving (i) gRNA-directed cleavage of the pre-mRNA at the bond immediately 5' of the region base paired to the gRNA, (ii) U deletion from or U addition to the 3' OH of the upstream mRNA half, (iii) ligation of the mRNA halves, and (iv) formation of additional base pairing between the correctly edited site and the gRNA that directs subsequent nuclease cleavage at the next editing site.
Resumo:
A constitutively active form of fibroblast growth factor 2 (FGFR2) was identified in rat osteosarcoma (ROS) cells by an expression cloning strategy. Unlike other tyrosine kinase receptors activated by N-terminal truncation in tumors, this receptor, FGFR2-ROS, contains an altered C terminus generated from chromosomal rearrangement with a novel gene, designated FGFR activating gene 1 (FRAG1). While the removal of the C terminus slightly activates FGFR2, the presence of the FRAG1 sequence drastically stimulates the transforming activity and autophosphorylation of the receptor. FGFR2-ROS is expressed as a unusually large protein and is highly phosphorylated in NIH 3T3 transfectants. FRAG1 is ubiquitously expressed and encodes a predicted protein of 28 kDa lacking significant structural similarity to known proteins. Epitope-tagged FRAG1 protein showed a perinuclear localization by immunofluorescence staining. The highly activated state of FGFR2-ROS appears to be attributed to constitutive dimer formation and higher phosphorylation level as well as possibly altered subcellular localization. These results indicate a unique mechanism of receptor activation by a C terminus alteration through a chromosomal fusion with FRAG1.
Resumo:
The Tsc2 gene, which is mutationally inactivated in the germ line of some families with tuberous sclerosis, encodes a large, membrane-associated GTPase activating protein (GAP) designated tuberin. Studies of the Eker rat model of hereditary cancer strongly support the role of Tsc2 as a tumor suppressor gene. In this study, the biological activity of tuberin was assessed by expressing the wild-type Tsc2 gene in tumor cell lines lacking functional tuberin and also in rat fibroblasts with normal levels of endogenous tuberin. The colony forming efficiency of Eker rat-derived renal carcinoma cells was significantly reduced following reintroduction of wild-type Tsc2. Tumor cells expressing the transfected Tsc2 gene became more anchorage-dependent and lost their ability to form tumors in severe combined immunodeficient mice. At the cellular level, restoration of tuberin expression caused morphological changes characterized by enlargement of the cells and increased contact inhibition. As with the full-length Tsc2 gene, a clone encoding only the C terminus of tuberin (amino acids 1049-1809, including the GAP domain) was capable of reducing both colony formation and in vivo tumorigenicity when transfected into the Eker rat tumor cells. In normal Rat1 fibroblasts, conditional overexpression of tuberin also suppressed colony formation and cell growth in vitro. These results provide direct experimental evidence for the tumor suppressor function of Tsc2 and suggest that the tuberin C terminus plays an important role in this activity.
Resumo:
Proteins anchored to the cell membrane via a glycosylphosphatidylinositol (GPI) moiety are found in all eukaryotes. After NH2-terminal peptide cleavage of the nascent protein by the signal peptidase, a second COOH-terminal signal peptide is cleaved with the concomitant addition of the GPI unit. The proposed mechanism of the GPI transfer is a transamidation reaction that involves the formation of an activated carbonyl intermediate (enzyme-substrate complex) with the ethanolamine moiety of the preassembled GPI unit serving as a nucleophile. Other nucleophilic acceptors like hydrazine (HDZ) and hydroxylamine have been shown to be possible alternate substrates for GPI. Since GPI has yet to be purified, the use of readily available nucleophilic substitutes such as HDZ and hydroxylamine is a viable alternative to study COOH-terminal processing by the putative transamidase. As a first step in developing a soluble system to study this process, we have examined the amino acid requirements at the COOH terminus for the transamidation reaction using HDZ as the nucleophilic acceptor instead of GPI. The hydrazide-forming reaction shows identical amino acid requirement profiles to that of GPI anchor addition. Additionally, we have studied other parameters relating to the kinetics of the transamidation reaction in the context of rough microsomal membranes. The findings with HDZ provide further evidence for the transamidase nature of the enzyme and also provide a starting point for development of a soluble assay.
Resumo:
Germ-line missense mutations of the receptor-like tyrosine kinase ret are the causative genetic event of the multiple endocrine neoplasia (MEN) type 2A and type 2B syndromes and of the familial medullary thyroid carcinoma. We have used the rat pheochromocytoma cell line, PC12, as a model system to investigate the mechanism or mechanisms by which expression of activated ret alleles contributes to the neoplastic phenotype in neuroendocrine cells. Here we show that stable expression of ret mutants (MEN2A and MEN2B alleles) in PC12 cells causes a dramatic conversion from a round to a flat morphology, accompanied by the induction of genes belonging to the early as well as the delayed response to nerve growth factor. However, in the transfected PC12 cells, the continuous expression of neuronal specific genes is not associated with the suppression of cell proliferation. Furthermore, expression of ret mutants renders PC12 cells unresponsive to nerve growth factor-induced inhibition of proliferation. These results suggest that induction of an aberrant pattern of differentiation, accompanied by unresponsiveness to growth-inhibitory physiological signals, may be part of the mechanism of action of activated ret alleles in the pathogenesis of neuroendocrine tumors associated with MEN2 syndromes.
Resumo:
Although transcription and pre-mRNA processing are colocalized in eukaryotic nuclei, molecules linking these processes have not previously been described. We have identified four novel rat proteins by their ability to interact with the repetitive C-terminal domain (CTD) of RNA polymerase II in a yeast two-hybrid assay. A yeast homolog of one of the rat proteins has also been shown to interact with the CTD. These CTD-binding proteins are all similar to the SR (serine/arginine-rich) family of proteins that have been shown to be involved in constitutive and regulated splicing. In addition to alternating Ser-Arg domains, these proteins each contain discrete N-terminal or C-terminal CTD-binding domains. We have identified SR-related proteins in a complex that can be immunoprecipitated from nuclear extracts with antibodies directed against RNA polymerase II. In addition, in vitro splicing is inhibited either by an antibody directed against the CTD or by wild-type but not mutant CTD peptides. Thus, these results suggest that the CTD and a set of CTD-binding proteins may act to physically and functionally link transcription and pre-mRNA processing.
Resumo:
The bacterial phosphoenolpyruvate/glycose phosphotransferase system (PTS) comprises a group of proteins that catalyze the transfer of the phosphoryl group from phosphoenolpyruvate (PEP) to sugars concomitant with their translocation. The first two steps of the phosphotransfer sequence are PEP <--> Enzyme I (EI) <--> HPr (the histidine-containing phosphocarrier protein). We have proposed that many functions of the PTS are regulated by EI, which undergoes a monomer/dimer transition. EI monomer (63.5 kDa) comprises two major domains: a flexible C-terminal domain (EI-C) and a protease-resistant, structurally stable N-terminal domain (EI-N) containing the active site His. Trypsin treatment of Salmonella typhimurium EI yielded EI-N, designated EI-N(t). Homogeneous recombinant Escherichia coli EI-N [i.e., EI-N(r)], has now been prepared in quantity, shows the expected thermodynamic unfolding properties and, similarly to EI-N(t), is phosphorylated by phospho-HPr, but not by PEP. In addition, binding of EI-N(r) to HPr was studied by isothermal titration calorimetry: K/a = 1.4 x 10(5) M(-1) and delta H = +8.8 kcal x mol(-1). Both values are comparable to those for HPr binding to intact EI. Fluorescence anisotropy [dansyl-EI-N(r)] and gel filtration of EI-N(r) show that it does not dimerize. These results emphasize the role of EI-C in dimerization and the regulation of intact EI.