109 resultados para multiplex reverse transcription-polymerase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Translocations involving chromosome band 11q23, found in 5-10% of human acute leukemias, disrupt the ALL-1 gene. This gene is fused by reciprocal translocation with a variety of other genes in acute lymphoblastic and myelogenous leukemias, and it undergoes self-fusion in acute myeloid leukemias with normal karyotype or trisomy 11. Here we report an alteration of the ALL-1 gene in a gastric carcinoma cell line (Mgc80-3). Characterization of this rearrangement revealed a three-way complex translocation, involving chromosomes 1 and 11, resulting in a partial duplication of the ALL-1 gene. Sequencing of reverse transcription-PCR products and Northern blot analysis showed that only the partially duplicated ALL-1 gene was transcribed, producing an mRNA with exon 8 fused to exon 2. This report of ALL-1 gene rearrangement in a solid tumor suggests that ALL-1 plays a role in the pathogenesis of some solid malignancies. The absence of the normal transcript in this cell line, in association with the loss-of-heterozygosity studies on chromosome 11q23 seen in solid tumors, suggests that ALL-1 is involved in tumorigenesis by a loss-of-function mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using RNA (Northern) blot hybridization and reverse transcription-PCR, we demonstrate that the brain-type cannabinoid receptor (CB1-R) mRNA, but not the spleen-type cannabinoid receptor (CB2-R) mRNA, is expressed in the mouse uterus and that this organ has the capacity to synthesize the putative endogenous cannabinoid ligand, anandamide (arachidonylethanolamide). The psychoactive cannabinoid component of marijuana--delta 9-tetrahydrocannabinol (THC)--or anandamide, but not the inactive and nonpsychoactive cannabidiol (CBD), inhibited forskolin-stimulated cyclic AMP formation in the mouse uterus, which was prevented by pertussis toxin pretreatment. These results suggest that uterine CB1-R is coupled to inhibitory guanine nucleotide-binding protein and is biologically active. Autoradiographic studies identified ligand binding sites ([3H]anandamide) in the uterine epithelium and stromal cells, suggesting that these cells are perhaps the targets for cannabinoid action. Scatchard analysis of the binding of [3H]WIN 55212-2, another cannabinoid receptor ligand, showed a single class of high-affinity binding sites in the endometrium with an apparent Kd of 2.4 nM and Bmax of 5.4 x 10(9) molecules per mg of protein. The gene encoding lactoferrin is an estrogen-responsive gene in the mouse uterus that was rapidly and transiently up-regulated by THC, but not by CBD, in ovariectomized mice in the absence of ovarian steroids. This effect, unlike that of 17 beta-estradiol (E2), was not influenced by a pure antiestrogen, ICI 182780, suggesting that the THC-induced uterine lactoferrin gene expression does not involve estrogen receptors. We propose that the uterus is a new target for cannabinoid ligand-receptor signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main physiological regulator of erythropoiesis is the hematopoietic growth factor erythropoietin (EPO), which is induced in response to hypoxia. Binding of EPO to the EPO receptor (EPO-R), a member of the cytokine receptor superfamily, controls the terminal maturation of red blood cells. So far, EPO has been reported to act mainly on erythroid precursor cells. However, we have detected mRNA encoding both EPO and EPO-R in mouse brain by reverse transcription-PCR. Exposure to 0.1% carbon monoxide, a procedure that causes functional anemia, resulted in a 20-fold increase of EPO mRNA in mouse brain as quantified by competitive reverse transcription-PCR, whereas the EPO-R mRNA level was not influenced by hypoxia. Binding studies on mouse brain sections revealed defined binding sites for radioiodinated EPO in distinct brain areas. The specificity of EPO binding was assessed by homologous competition with an excess of unlabeled EPO and by using two monoclonal antibodies against human EPO, one inhibitory and the other noninhibitory for binding of EPO to EPO-R. Major EPO binding sites were observed in the hippocampus, capsula interna, cortex, and midbrain areas. Functional expression of the EPO-R and hypoxic upregulation of EPO suggest a role of EPO in the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduced progesterone metabolite tetrahydroprogesterone (3 alpha-hydroxy-5 alpha-pregnan-20-one; 3 alpha,5 alpha-THP) is a positive modulator of the gamma-aminobutyric acid type A (GABAA) receptor. Experiments performed in vitro with hypothalamic fragments have previously shown that GABA could modulate the release of gonadotropin-releasing hormone (GnRH). Using GT1-1 immortalized GnRH neurons, we investigated the role of GABAA receptor ligands, including 3 alpha,5 alpha-THP, on the release of GnRH. We first characterized the GABAA receptors expressed by these neurons. [3H]Muscimol, but not [3H]flunitrazepam, bound with high affinity to GT1-1 cell membranes (Kd = 10.9 +/- 0.3 nM; Bmax = 979 +/- 12 fmol/mg of protein), and [3H]muscimol binding was enhanced by 3 alpha,5 alpha-THP. mRNAs encoding the alpha 1 and beta 3 subunits of the GABAA receptor were detected by the reverse transcriptase polymerase chain reaction. In agreement with binding data, the benzodiazepine-binding gamma subunit mRNA was absent. GnRH release studies showed a dose-related stimulating action of muscimol. 3 alpha,5 alpha-THP not only modulated muscimol-induced secretion but also stimulated GnRH release when administered alone. Bicuculline and picrotoxin blocked the effects of 3 alpha,5 alpha-THP and muscimol. Finally, we observed that GT1-1 neurons convert progesterone to 3 alpha,5 alpha-THP. We propose that progesterone may increase the release of GnRH by a membrane mechanism, via its reduced metabolite 3 alpha,5 alpha-THP acting at the GABAA receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for isolating and cloning mRNA populations from individual cells in living, intact plant tissues is described. The contents of individual cells were aspirated into micropipette tips filled with RNA extraction buffer. The mRNA from these cells was purified by binding to oligo(dT)-linked magnetic beads and amplified on the beads using reverse transcription and PCR. The cell-specific nature of the isolated mRNA was verified by creating cDNA libraries from individual tomato leaf epidermal and guard cell mRNA preparations. In testing the reproducibility of the method, we discovered an inherent limitation of PCR amplification from small amounts of any complex template. This phenomenon, which we have termed the "Monte Carlo" effect, is created by small and random differences in amplification efficiency between individual templates in an amplifying cDNA population. The Monte Carlo effect is dependent upon template concentration: the lower the abundance of any template, the less likely its true abundance will be reflected in the amplified library. Quantitative assessment of the Monte Carlo effect revealed that only rare mRNAs (< or = 0.04% of polyadenylylated mRNA) exhibited significant variation in amplification at the single-cell level. The cDNA cloning approach we describe should be useful for a broad range of cell-specific biological applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the p53 gene are implicated in the pathogenesis of half of all human tumors. We have developed a simple functional assay for p53 mutation in which human p53 expressed in Saccharomyces cerevisiae activates transcription of the ADE2 gene. Consequently, yeast colonies containing wild-type p53 are white and colonies containing mutant p53 are red. Since this assay tests the critical biological function of p53, it can distinguish inactivating mutations from functionally silent mutations. By combining this approach with gap repair techniques in which unpurified p53 reverse transcription-PCR products are cloned by homologous recombination in vivo it is possible to screen large numbers of samples and multiple clones per sample for biologically important mutations. This means that mutations can be detected in tumor specimens contaminated with large amounts of normal tissue. In addition, the assay detects temperature-sensitive mutants, which give pink colonies. We show here that this form of p53 functional assay can be used rapidly to detect germline mutations in blood samples, somatic mutations in tumors, and mutations in cell lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoblastoma cells in culture have previously been shown to express cone-specific genes but not their rod counterparts. We have detected the messages for the rod alpha, beta, and gamma subunits of cGMP phosphodiesterase (PDE), the rod alpha subunit of transducin, rod opsin, and the cone alpha' subunit of PDE in RNA of human Y-79 retinoblastoma cells by reverse transcription-PCR. Quantitative analysis of the mRNAs for the rod alpha and cone alpha' PDE subunits revealed that they were expressed at comparable levels; however, the transcript encoding the rod beta PDE subunit was 10 times more abundant in these cells. Northern hybridization analysis of Y-79 cell RNA confirmed the presence of the transcripts for rod and cone PDE catalytic subunits. To test whether the transcriptional machinery required for the expression of rod-specific genes was endogenous in Y-79 retinoblastoma cells, cultures were transfected with a construct containing the promoter region of the rod beta PDE subunit gene attached to the firefly luciferase reporter vector. Significant levels of reporter enzyme activity were observed in the cell lysates. Our results demonstrate that the Y-79 retinoblastoma cell line is a good model system for the study of transcriptional regulation of rod-specific genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A subtractive PCR methodology known as representational difference analysis was used to clone specific nucleotide sequences present in the infectious plasma from a tamarin infected with the GB hepatitis agent. Eleven unique clones were identified, seven of which were examined extensively. All seven clones appeared to be derived from sequences exogenous to the genomes of humans, tamarins, Saccharomyces cerevisiae, and Escherichia coli. In addition, sequences from these clones were not detected in plasma or liver tissue of tamarins prior to their inoculation with the GB agent. These sequences were detected by reverse transcription-PCR in acute-phase plasma of tamarins inoculated with the GB agent. Probes derived from two of the seven clones detected an RNA species of > or = 8.3 kb in the liver of a GB-agent-infected tamarin by Northern blot hybridization. Sequence analysis indicated that five of the seven clones encode polypeptides that possess limited amino acid identity with the nonstructural proteins of hepatitis C virus. Extension of the sequences found in the seven clones revealed that plasma from an infected tamarin contained two RNA molecules > 9 kb long. Limited sequence identity with various isolates of hepatitis C virus and the relative positions of putative RNA helicases and RNA-dependent RNA polymerases in the predicted protein products of these molecules suggested that the GB agent contains two unique flavivirus-like genomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oncogenic retroviruses carry coding sequences that are transduced from cellular protooncogenes. Natural transduction involves two nonhomologous recombinations and is thus extremely rare. Since transduction has never been reproduced experimentally, its mechanism has been studied in terms of two hypotheses: (i) the DNA model, which postulates two DNA recombinations, and (ii) the RNA model, which postulates a 5' DNA recombination and a 3' RNA recombination occurring during reverse transcription of viral and protooncogene RNA. Here we use two viral DNA constructs to test the prediction of the DNA model that the 3' DNA recombination is achieved by conventional integration of a retroviral DNA 3' of the chromosomal protooncogene coding region. For the DNA model to be viable, such recombinant viruses must be infectious without the purportedly essential polypurine tract (ppt) that precedes the 3' long terminal repeat (LTR) of all retroviruses. Our constructs consist of a ras coding region from Harvey sarcoma virus which is naturally linked at the 5' end to a retroviral LTR and artificially linked at the 3' end either directly (construct NdN) or by a cellular sequence (construct SU) to the 5' LTR of a retrovirus. Both constructs lack the ppt, and the LTR of NdN even lacks 30 nucleotides at the 5' end. Both constructs proved to be infectious, producing viruses at titers of 10(5) focus-forming units per ml. Sequence analysis proved that both viruses were colinear with input DNAs and that NdN virus lacked a ppt and the 5' 30 nucleotides of the LTR. The results indicate that DNA recombination is sufficient for retroviral transduction and that neither the ppt nor the complete LTR is essential for retrovirus replication. DNA recombination explains the following observations by others that cannot be reconciled with the RNA model: (i) experimental transduction is independent of the packaging efficiency of viral RNA, and (ii) experimental transduction may invert sequences with respect to others, as expected for DNA recombination during transfection.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The TATA box sequence in eukaryotes is located about 25 bp upstream of many genes transcribed by RNA polymerase II (Pol II) and some genes transcribed by RNA polymerase III (Pol III). The TATA box is recognized in a sequence-specific manner by the TATA box-binding protein (TBP), an essential factor involved in the initiation of transcription by all three eukaryotic RNA polymerases. We have investigated the recognition of the TATA box by the Pol II and Pol III basal transcription machinery and its role in establishing the RNA polymerase specificity of the promoter. Artificial templates were constructed that contained a canonical TATA box as the sole promoter element but differed in the orientation of the 8-bp TATA box sequence. As expected, Pol II initiated transcription in unfractionated nuclear extracts downstream of the "forward" TATA box. In distinct contrast, transcription that initiated downstream of the "reverse" TATA box was carried out specifically by Pol III. Importantly, this effect was observed regardless of the source of the DNA either upstream or downstream of the TATA sequence. These findings suggest that TBP may bind in opposite orientations on Pol II and Pol III promoters and that opposite, yet homologous, surfaces of TBP may be utilized by the Pol II and Pol III basal machinery for the initiation of transcription.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interactions between the cAMP receptor protein (CRP) and the carboxy-terminal regulatory domain (CTD) of Escherichia coli RNA polymerase α subunit were analyzed at promoters carrying tandem DNA sites for CRP binding using a chemical nuclease covalently attached to α. Each CRP dimer was found to direct the positioning of one of the two α subunit CTDs. Thus, the function of RNA polymerase may be subject to regulation through protein–protein interactions between the two α subunits and two different species of transcription factors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RNA polymerase I (pol I) is a nuclear enzyme whose function is to transcribe the duplicated genes encoding the precursor of the three largest ribosomal RNAs. We report a cell-free system from broccoli (Brassica oleracea) inflorescence that supports promoter-dependent RNA pol I transcription in vitro. The transcription system was purified extensively by DEAE-Sepharose, Biorex 70, Sephacryl S300, and Mono Q chromatography. Activities required for pre-rRNA transcription copurified with the polymerase on all four columns, suggesting their association as a complex. Purified fractions programmed transcription initiation from the in vivo start site and utilized the same core promoter sequences required in vivo. The complex was not dissociated in 800 mM KCl and had a molecular mass of nearly 2 MDa based on gel filtration chromatography. The most highly purified fractions contain ≈30 polypeptides, two of which were identified immunologically as RNA polymerase subunits. These data suggest that the occurrence of a holoenzyme complex is probably not unique to the pol II system but may be a general feature of eukaryotic nuclear polymerases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole–imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located within RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cessation of transcription at specific terminator DNA sequences is used by viruses, bacteria, and eukaryotes to regulate the expression of downstream genes, but the mechanisms of transcription termination are poorly characterized. To elucidate the kinetic mechanism of termination at the intrinsic terminators of enteric bacteria, we observed, by using single-molecule light microscopy techniques, the behavior of surface-immobilized Escherichia coli RNA polymerase (RNAP) molecules in vitro. An RNAP molecule remains at a canonical intrinsic terminator for ≈64 s before releasing DNA, implying the formation of an elongation-incompetent (paused) intermediate by transcription complexes that terminate but not by those that read through the terminator. Analysis of pause lifetimes establishes a complete minimal mechanism of termination in which paused intermediate formation is both necessary and sufficient to induce release of RNAP at the terminator. The data suggest that intrinsic terminators function by a nonequilibrium process in which terminator effectiveness is determined by the relative rates of nucleotide addition and paused state entry by the transcription complex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By using site-specific protein-DNA photocrosslinking, we define the positions of TATA-binding protein, transcription factor IIB, transcription factor IIF, and subunits of RNA polymerase II (RNAPII) relative to promoter DNA within the human transcription preinitiation complex. The results indicate that the interface between the largest and second-largest subunits of RNAPII forms an extended, ≈240 Å channel that interacts with promoter DNA both upstream and downstream of the transcription start. By using electron microscopy, we show that RNAPII compacts promoter DNA by the equivalent of ≈50 bp. Together with the published structure of RNAPII, the results indicate that RNAPII wraps DNA around its surface and suggest a specific model for the trajectory of the wrapped DNA.