83 resultados para glyicne-rich protein
Resumo:
We have identified an amino acid sequence in the Drosophila Transformer (Tra) protein that is capable of directing a heterologous protein to nuclear speckles, regions of the nucleus previously shown to contain high concentrations of spliceosomal small nuclear RNAs and splicing factors. This sequence contains a nucleoplasmin-like bipartite nuclear localization signal (NLS) and a repeating arginine/serine (RS) dipeptide sequence adjacent to a short stretch of basic amino acids. Sequence comparisons from a number of other splicing factors that colocalize to nuclear speckles reveal the presence of one or more copies of this motif. We propose a two-step subnuclear localization mechanism for splicing factors. The first step is transport across the nuclear envelope via the nucleoplasmin-like NLS, while the second step is association with components in the speckled domain via the RS dipeptide sequence.
Resumo:
All transcription terminators for RNA polymerase I (pol I) that have been studied so far, ranging from yeast to humans, require a specific DNA binding protein to cause termination. In yeast, this terminator protein has been identified as Reb1p. We now show that, in addition to the binding site for Reb1p, the yeast pol I terminator also requires the presence of a T-rich region coding for the last 12 nucleotides of the transcript. Reb1p cooperates with this T-rich element, both to pause the polymerase and to effect release of the transcript. These findings have implications for the termination mechanism used by all three nuclear RNA polymerases, since all three are known to pause at this terminator.
Resumo:
Protein-protein interactions involving specific transactivation domains play a central role in gene transcription and its regulation. The promoter-specific transcription factor Sp1 contains two glutamine-rich transcriptional activation domains (A and B) that mediate direct interactions with the transcription factor TFIID complex associated with RNA polymerase II and synergistic effects involving multiple Sp1 molecules. In the present study, we report the complementary DNA sequence for an alternatively spliced form of mouse Sp1 (mSp1-S) that lacks one of the two glutamine-rich activation regions present in the full-length protein. Corresponding transcripts were identified in mouse tissues and cell lines, and an Sp1-related protein identical in size to that predicted for mSp1-S was detected in mouse nuclear extracts. Cotransfection analysis revealed that mSp1-S lacks appreciable activity at promoters containing a single Sp1 response element but is active when multiple Sp1 sites are present, suggesting synergistic interactions between multiple mSp1-S molecules. The absence of a single glutamine-rich domain does not fully explain the properties of the smaller protein and indicates that additional structural features account for its unique transcriptional activity. The functional implications of this alternatively spliced form of Sp1 are discussed.
Resumo:
A selective polyclonal antibody directed toward the C-terminal decapeptide common to the alpha subunits of Gq and G11 G proteins (G alpha q/G alpha 11) was prepared and used to investigate the subcellular distribution fo these proteins in WRK1 cells, a rat mammary tumor cell line. In immunoblots, the antibody recognized purified G alpha q and G alpha 11 proteins and labeled only two bands corresponding to these alpha subunits. Functional studies indicated that this antibody inhibited vasopressin- and guanosine 5'-[alpha-thio]triphosphate-sensitive phospholipase C activities. Immunofluorescence experiments done with this antibody revealed a filamentous labeling corresponding to intracytoplasmic and perimembranous actin-like filament structures. Colocalization of G alpha q/G alpha 11 and F-actin filaments (F-actin) was demonstrated by double-labeling experiments with anti-G alpha q/G alpha 11 and anti-actin antibodies. Immunoblot analysis of membrane, cytoskeletal, and F-actin-rich fractions confirmed the close association of G alpha q/G alpha 11 with actin. Large amounts of G alpha q/G alpha 11 were recovered in the desmin- and tubulin-free F-actin-rich fraction obtained by a double depolymerization-repolymerization cycle. Disorganization of F-actin filaments with cytochalasin D preserved G alpha q/G alpha 11 and F-actin colocalization but partially inhibited vasopressin- and fluoroaluminate-sensitive phospholipase C activity, suggesting that actin-associated G alpha q/G alpha 11 proteins play a role in signal transduction.
Resumo:
The low-density lipoprotein (LDL) receptor plays a central role in mammalian cholesterol metabolism, clearing lipoproteins which bear apolipoproteins E and B-100 from plasma. Mutations in this molecule are associated with familial hypercholesterolemia, a condition which leads to an elevated plasma cholesterol concentration and accelerated atherosclerosis. The N-terminal segment of the LDL receptor contains a heptad of cysteine-rich repeats that bind the lipoproteins. Similar repeats are present in related receptors, including the very low-density lipoprotein receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor, and in proteins which are functionally unrelated, such as the C9 component of complement. The first repeat of the human LDL receptor has been expressed in Escherichia coli as a glutathione S-transferase fusion protein, and the cleaved and purified receptor module has been shown to fold to a single, fully oxidized form that is recognized by the monoclonal antibody IgG-C7 in the presence of calcium ions. The three-dimensional structure of this module has been determined by two-dimensional NMR spectroscopy and shown to consist of a beta-hairpin structure, followed by a series of beta turns. Many of the side chains of the acidic residues, including the highly conserved Ser-Asp-Glu triad, are clustered on one face of the module. To our knowledge, this structure has not previously been described in any other protein and may represent a structural paradigm both for the other modules in the LDL receptor and for the homologous domains of several other proteins. Calcium ions had only minor effects on the CD spectrum and no effect on the 1H NMR spectrum of the repeat, suggesting that they induce no significant conformational change.
Resumo:
Arginine-rich domains are used by a variety of RNA-binding proteins to recognize specific RNA hairpins. It has been shown previously that a 17-aa arginine-rich peptide from the human immunodeficiency virus Rev protein binds specifically to its RNA site when the peptide is in an alpha-helical conformation. Here we show that related peptides from splicing factors, viral coat proteins, and bacteriophage antiterminators (the N proteins) also have propensities to form alpha-helices and that the N peptides require helical conformations to bind to their cognate RNAs. In contrast, introducing proline mutations into the arginine-rich domain of the human immunodeficiency virus Tat protein abolishes its potential to form an alpha-helix but does not affect RNA-binding affinity in vitro or in vivo. Based on results from several peptide-RNA model systems, we suggest that helical peptides may be used to recognize RNA structures having particularly wide major grooves, such as those found near loops or large bulges, and that nonhelical or extended peptides may be used to recognize less accessible grooves.
Resumo:
A 17-amino acid arginine-rich peptide from the bovine immunodeficiency virus Tat protein has been shown to bind with high affinity and specificity to bovine immunodeficiency virus transactivation response element (TAR) RNA, making contacts in the RNA major groove near a bulge. We show that, as in other peptide-RNA complexes, arginine and threonine side chains make important contributions to binding but, unexpectedly, that one isoleucine and three glycine residues also are critical. The isoleucine side chain may intercalate into a hydrophobic pocket in the RNA. Glycine residues may allow the peptide to bind deeply within the RNA major groove and may help determine the conformation of the peptide. Similar features have been observed in protein-DNA and drug-DNA complexes in the DNA minor groove, including hydrophobic interactions and binding deep within the groove, suggesting that the major groove of RNA and minor groove of DNA may share some common recognition features.
Resumo:
To study the binding specificity of Src homology 3 (SH3) domains, we have screened a mouse embryonic expression library for peptide fragments that interact with them. Several clones were identified that express fragments of proteins which, through proline-rich binding sites, exhibit differential binding specificity to various SH3 domains. Src-SH3-specific binding uses a sequence of 7 aa of the consensus RPLPXXP, in which the N-terminal arginine is very important. The SH3 domains of the Src-related kinases Fyn, Lyn, and Hck bind to this sequence with the same affinity as that of the Src SH3. In contrast, a quite different proline-rich sequence from the Btk protein kinase binds to the Fyn, Lyn, and Hck SH3 domains, but not to the Src SH3. Specific binding of the Abl SH3 requires a longer, more proline-rich sequence but no arginine. One clone that binds to both Src and Abl SH3 domains through a common site exhibits reversed binding orientation, in that an arginine indispensable for binding to all tested SH3 domains occurs at the C terminus. Another clone contains overlapping yet distinct Src and Abl SH3 binding sites. Binding to the SH3 domains is mediated by a common PXXP amino acid sequence motif present on all ligands, and specificity comes about from other interactions, often ones involving arginine. The rules governing in vivo usage of particular sites by particular SH3 domains are not clear, but one binding orientation may be more specific than another.