128 resultados para expression pattern development


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many human malignant cells lack methylthioadenosine phosphorylase (MTAP) enzyme activity. The gene (MTAP) encoding this enzyme was previously mapped to the short arm of chromosome 9, band p21-22, a region that is frequently deleted in multiple tumor types. To clone candidate tumor suppressor genes from the deleted region on 9p21-22, we have constructed a long-range physical map of 2.8 megabases for 9p21 by using overlapping yeast artificial chromosome and cosmid clones. This map includes the type IIFN gene cluster, the recently identified candidate tumor suppressor genes CDKN2 (p16INK4A) and CDKN2B (p15INK4B), and several CpG islands. In addition, we have identified other transcription units within the yeast artificial chromosome contig. Sequence analysis of a 2.5-kb cDNA clone isolated from a CpG island that maps between the IFN genes and CDKN2 reveals a predicted open reading frame of 283 amino acids followed by 1302 nucleotides of 3' untranslated sequence. This gene is evolutionarily conserved and shows significant amino acid homologies to mouse and human purine nucleoside phosphorylases and to a hypothetical 25.8-kDa protein in the pet gene (coding for cytochrome bc1 complex) region of Rhodospirillum rubrum. The location, expression pattern, and nucleotide sequence of this gene suggest that it codes for the MTAP enzyme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bclx gene has been shown to regulate programmed cell death in vitro. We now show that Bclx expression increases dramatically when T cells differentiate from CD4- CD8- (double negative) thymocytes to CD4+ CD8+ [double positive (DP)] thymocytes. In contrast single-positive (SP) thymocytes express negligible amounts of Bclx protein. This expression pattern contrasts with that of Bcl2, which is present in double-negative thymocytes, down-regulated in DP thymocytes, and reinduced upon maturation to SP thymocytes. Elimination of Bclx by gene targeting dramatically shortens the survival of DP thymocytes but not the survival of SP thymocytes or peripheral SP T cells. These data suggest that the induction of Bclx during thymic maturation plays a critical role in regulating the length of time DP thymocytes survive in the absence of selection.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The molecular mechanism of hepatic cell growth and differentiation is ill defined. In the present study, we examined the putative role of tyrosine phosphorylation in normal rat liver development and in an in vitro model, the α-fetoprotein-producing (AFP+) and AFP-nonproducing (AFP−) clones of the McA-RH 7777 rat hepatoma. We demonstrated in vivo and in vitro that the AFP+ phenotype is clearly associated with enhanced tyrosine phosphorylation, as assessed by immunoblotting and flow cytometry. Moreover, immunoprecipitation of proteins with anti-phosphotyrosine antibody showed that normal fetal hepatocytes expressed the same phosphorylation pattern as stable AFP+ clones and likewise for adult hepatocytes and AFP− clones. The tyrosine phosphorylation of several proteins, including the β-subunit of the insulin receptor, insulin receptor substrate-1, p85 regulatory subunit of phosphatidylinositol-3-kinase, and ras-guanosine triphosphatase-activating protein, was observed in AFP+ clones, whereas the same proteins were not phosphorylated in AFP− clones. We also observed that fetal hepatocytes and the AFP+ clones express 4 times more of the insulin receptor β-subunit compared with adult hepatocytes and AFP− clones and, accordingly, that these AFP+ clones were more responsive to exogenous insulin in terms of protein tyrosine phosphorylation. Finally, growth rate in cells of AFP+ clones was higher than that measured in cells of AFP− clones, and inhibition of phosphatidylinositol-3-kinase by LY294002 and Wortmannin blocked insulin- and serum-stimulated DNA synthesis only in cells of AFP+ clones. These studies provide evidences in support of the hypothesis that signaling via insulin prevents hepatocyte differentiation by promoting fetal hepatocyte growth.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

HLA-G is a nonclassical class I major histocompatibility complex molecule with a restricted pattern of expression that includes the placental extravillus cytotrophoblast cells in direct contact with maternal tissues. Circumstantial evidence suggests that HLA-G may play a role in protection of the semiallogeneic human fetus. We examined whether HLA-G is expressed during the critical period of preimplantation human development and whether expression of this molecule could be correlated with the cleavage rate of embryos. Using reverse transcription PCR on surplus human embryos and unfertilized oocytes from patients undergoing in vitro fertilization we detected HLA-G heavy chain mRNA in 40% of 148 of blastocysts tested. The presence of HLA-G mRNA was also detected in unfertilized oocytes and in early embryos, but not in control cumulus oophorus cells. beta 2-Microglobulin mRNA was also found in those embryos expressing HLA-G. In concordance with our mRNA data, a similar proportion of embryos stained positive for HLA-G utilizing a specific monoclonal antibody. Interestingly, expression of HLA-G mRNA was associated with an increased cleavage rate, as compared to embryos lacking HLA-G transcript. Thus, HLA-G could be a functional homologue of the mouse Qa-2 antigen, which has been implicated in differences in the rate of preimplantation embryo development. To our knowledge, the presence of HLA-G mRNA and protein in human preimplantation embryos and oocytes has not been reported previously. The correlation of HLA-G mRNA expression with cleavage rate suggests that this molecule may play an important role in human pre-embryo development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of life history evolution in hominids is crucial for the discernment of when and why humans have acquired our unique maturational pattern. Because the development of dentition is critically integrated into the life cycle in mammals, the determination of the time and pattern of dental development represents an appropriate method to infer changes in life history variables that occurred during hominid evolution. Here we present evidence derived from Lower Pleistocene human fossil remains recovered from the TD6 level (Aurora stratum) of the Gran Dolina site in the Sierra de Atapuerca, northern Spain. These hominids present a pattern of development similar to that of Homo sapiens, although some aspects (e.g., delayed M3 calcification) are not as derived as that of European populations and people of European origin. This evidence, taken together with the present knowledge of cranial capacity of these and other late Early Pleistocene hominids, supports the view that as early as 0.8 Ma at least one Homo species shared with modern humans a prolonged pattern of maturation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor that has been demonstrated to regulate fat cell development and glucose homeostasis. PPARγ is also expressed in a subset of macrophages and negatively regulates the expression of several proinflammatory genes in response to natural and synthetic ligands. We here demonstrate that PPARγ is expressed in macrophage foam cells of human atherosclerotic lesions, in a pattern that is highly correlated with that of oxidation-specific epitopes. Oxidized low density lipoprotein (oxLDL) and macrophage colony-stimulating factor, which are known to be present in atherosclerotic lesions, stimulated PPARγ expression in primary macrophages and monocytic cell lines. PPARγ mRNA expression was also induced in primary macrophages and THP-1 monocytic leukemia cells by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Inhibition of protein kinase C blocked the induction of PPARγ expression by TPA, but not by oxLDL, suggesting that more than one signaling pathway regulates PPARγ expression in macrophages. TPA induced the expression of PPARγ in RAW 264.7 macrophages by increasing transcription from the PPARγ1 and PPARγ3 promoters. In concert, these observations provide insights into the regulation of PPARγ expression in activated macrophages and raise the possibility that PPARγ ligands may influence the progression of atherosclerosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heart failure is accompanied by severely impaired β-adrenergic receptor (βAR) function, which includes loss of βAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of βAR function is agonist-stimulated receptor phosphorylation by the βAR kinase (βARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in βAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of βARK1 or the β2AR were mated into a genetic model of murine heart failure (MLP−/−). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP−/− and MLP−/−/β2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP−/−/βARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP−/−/βARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP−/− mice but less than controls. Importantly, heightened βAR desensitization in the MLP−/− mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the βARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal βAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit βARK1 as a novel mode of therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hox complex genes control spatial patterning mechanisms in the development of arthropod and vertebrate body plans. Hox genes are all expressed during embryogenesis in these groups, which are all directly developing organisms in that embryogenesis leads at once to formation of major elements of the respective adult body plans. In the maximally indirect development of a large variety of invertebrates, the process of embryogenesis leads only to a free-living, bilaterally organized feeding larva. Maximal indirect development is exemplified in sea urchins. The 5-fold radially symmetric adult body plan of the sea urchin is generated long after embryogenesis is complete, by a separate process occurring within imaginal tissues set aside in the larva. The single Hox gene complex of Strongylocentrotus purpuratus contains 10 genes, and expression of eight of these genes was measured by quantitative methods during both embryonic and larval developmental stages and also in adult tissues. Only two of these genes are used significantly during the entire process of embryogenesis per se, although all are copiously expressed during the stages when the adult body plan is forming in the imaginal rudiment. They are also all expressed in various combinations in adult tissues. Thus, development of a microscopic, free-living organism of bilaterian grade, the larva, does not appear to require expression of the Hox gene cluster as such, whereas development of the adult body plan does. These observations reflect on mechanisms by which bilaterian metazoans might have arisen in Precambrian evolution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The signal transducer and activator of transcription, STAT5b, has been implicated in signal transduction pathways for a number of cytokines and growth factors, including growth hormone (GH). Pulsatile but not continuous GH exposure activates liver STAT5b by tyrosine phosphorylation, leading to dimerization, nuclear translocation, and transcriptional activation of the STAT, which is proposed to play a key role in regulating the sexual dimorphism of liver gene expression induced by pulsatile plasma GH. We have evaluated the importance of STAT5b for the physiological effects of GH pulses using a mouse gene knockout model. STAT5b gene disruption led to a major loss of multiple, sexually differentiated responses associated with the sexually dimorphic pattern of pituitary GH secretion. Male-characteristic body growth rates and male-specific liver gene expression were decreased to wild-type female levels in STAT5b−/− males, while female-predominant liver gene products were increased to a level intermediate between wild-type male and female levels. Although these responses are similar to those observed in GH-deficient Little mice, STAT5b−/− mice are not GH-deficient, suggesting that they may be GH pulse-resistant. Indeed, the dwarfism, elevated plasma GH, low plasma insulin-like growth factor I, and development of obesity seen in STAT5b−/− mice are all characteristics of Laron-type dwarfism, a human GH-resistance disease generally associated with a defective GH receptor. The requirement of STAT5b to maintain sexual dimorphism of body growth rates and liver gene expression suggests that STAT5b may be the major, if not the sole, STAT protein that mediates the sexually dimorphic effects of GH pulses in liver and perhaps other target tissues. STAT5b thus has unique physiological functions for which, surprisingly, the highly homologous STAT5a is unable to substitute.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The twn2 mutant of Arabidopsis exhibits a defect in early embryogenesis where, following one or two divisions of the zygote, the decendents of the apical cell arrest. The basal cells that normally give rise to the suspensor proliferate abnormally, giving rise to multiple embryos. A high proportion of the seeds fail to develop viable embryos, and those that do, contain a high proportion of partially or completely duplicated embryos. The adult plants are smaller and less vigorous than the wild type and have a severely stunted root. The twn2-1 mutation, which is the only known allele, was caused by a T-DNA insertion in the 5′ untranslated region of a putative valyl-tRNA synthetase gene, valRS. The insertion causes reduced transcription of the valRS gene in reproductive tissues and developing seeds but increased expression in leaves. Analysis of transcript initiation sites and the expression of promoter–reporter fusions in transgenic plants indicated that enhancer elements inside the first two introns interact with the border of the T-DNA to cause the altered pattern of expression of the valRS gene in the twn2 mutant. The phenotypic consequences of this unique mutation are interpreted in the context of a model, suggested by Vernon and Meinke [Vernon, D. M. & Meinke, D. W. (1994) Dev. Biol. 165, 566–573], in which the apical cell and its decendents normally suppress the embryogenic potential of the basal cell and its decendents during early embryo development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mature T cell receptor (TCR) repertoire is shaped by positive- and negative-selection events taking place during T cell development. These events are regulated by interactions between the TCR and major histocompatibility complex molecules presenting self-peptides. It has been shown that many antagonist peptides are efficient at mediating positive selection. In this study we analyzed the effects of a transgene encoding an antagonist peptide (influenza NP34) that is presented by H-2Db in a Tap-1-independent fashion in mice expressing the influenza NP68-specific TCR F5. We find that the transgenic peptide does not mediate positive or negative selection in F5+Tap-1−/− mice, but inhibits maturation of CD8+ single positive thymocytes in F5+Tap-1+ mice without inducing signs of negative selection. We conclude that antagonism of antigen recognition occurs not only at the level of mature T cells but also in T cell development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The myristoylated alanine-rich C kinase substrate (MARCKS) is a prominent protein kinase C (PKC) substrate in brain that is expressed highly in hippocampal granule cells and their axons, the mossy fibers. Here, we examined hippocampal infrapyramidal mossy fiber (IP-MF) limb length and spatial learning in heterozygous Macs mutant mice that exhibit an ≈50% reduction in MARCKS expression relative to wild-type controls. On a 129B6(N3) background, the Macs mutation produced IP-MF hyperplasia, a significant increase in hippocampal PKCɛ expression, and proficient spatial learning relative to wild-type controls. However, wild-type 129B6(N3) mice exhibited phenotypic characteristics resembling inbred 129Sv mice, including IP-MF hypoplasia relative to inbred C57BL/6J mice and impaired spatial-reversal learning, suggesting a significant contribution of 129Sv background genes to wild-type and possibly mutant phenotypes. Indeed, when these mice were backcrossed with inbred C57BL/6J mice for nine generations to reduce 129Sv background genes, the Macs mutation did not effect IP-MF length or hippocampal PKCɛ expression and impaired spatial learning relative to wild-type controls, which now showed proficient spatial learning. Moreover, in a different strain (B6SJL(N1), the Macs mutation also produced a significant impairment in spatial learning that was reversed by transgenic expression of MARCKS. Collectively, these data indicate that the heterozygous Macs mutation modifies the expression of linked 129Sv gene(s), affecting hippocampal mossy fiber development and spatial learning performance, and that MARCKS plays a significant role in spatial learning processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Control of cell identity during development is specified in large part by the unique expression patterns of multiple homeobox-containing (Hox) genes in specific segments of an embryo. Trithorax and Polycomb-group (Trx-G and Pc-G) proteins in Drosophila maintain Hox expression or repression, respectively. Mixed lineage leukemia (MLL) is frequently involved in chromosomal translocations associated with acute leukemia and is the one established mammalian homologue of Trx. Bmi-1 was first identified as a collaborator in c-myc-induced murine lymphomagenesis and is homologous to the Drosophila Pc-G member Posterior sex combs. Here, we note the axial-skeletal transformations and altered Hox expression patterns of Mll-deficient and Bmi-1-deficient mice were normalized when both Mll and Bmi-1 were deleted, demonstrating their antagonistic role in determining segmental identity. Embryonic fibroblasts from Mll-deficient compared with Bmi-1-deficient mice demonstrate reciprocal regulation of Hox genes as well as an integrated Hoxc8-lacZ reporter construct. Reexpression of MLL was able to overcome repression, rescuing expression of Hoxc8-lacZ in Mll-deficient cells. Consistent with this, MLL and BMI-I display discrete subnuclear colocalization. Although Drosophila Pc-G and Trx-G members have been shown to maintain a previously established transcriptional pattern, we demonstrate that MLL can also dynamically regulate a target Hox gene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The efficient expression of therapeutic genes in target cells or tissues is an important component of efficient and safe gene therapy. Utilizing regulatory elements from the human cytokeratin 18 (K18) gene, including 5′ genomic sequences and one of its introns, we have developed a novel expression cassette that can efficiently express reporter genes, as well as the human cystic fibrosis transmembrane conductance regulator (CFTR) gene, in cultured lung epithelial cells. CFTR transcripts expressed from the native K18 enhancer/promoter include two alternative splicing products, due to the activation of two cryptic splice sites in the CFTR coding region. Modification of the K18 intron and CFTR cDNA sequences eliminated the cryptic splice sites without changing the CFTR amino acid sequence, and led to enhanced CFTR mRNA and protein expression as well as biological function. Transgenic expression analysis in mice showed that the modified expression cassette can direct efficient and epithelium-specific expression of the Escherichia coli LacZ gene in the airways of fetal lungs, with no detectable expression in lung fibroblasts or endothelial cells. This is the first expression cassette which selectively directs lung transgene expression for CFTR gene therapy to airway epithelia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cell adhesion molecule L1 regulates axonal guidance and fasciculation during development. We previously identified the regulatory region of the L1 gene and showed that it was sufficient for establishing the neural pattern of L1 expression in transgenic mice. In the present study, we characterize a DNA element within this region called the HPD that contains binding motifs for both homeodomain and Pax proteins and responds to signals from bone morphogenetic proteins (BMPs). An ATTA sequence within the core of the HPD was required for binding to the homeodomain protein Barx2 while a separate paired domain recognition motif was necessary for binding to Pax-6. In cellular transfection experiments, L1-luciferase reporter constructs containing the HPD were activated an average of 4-fold by Pax-6 in N2A cells and 5-fold by BMP-2 and BMP-4 in Ng108 cells. Both of these responses were eliminated on deletion of the HPD from L1 constructs. In transgenic mice, deletion of the HPD from an L1-lacZ reporter resulted in a loss of β-galactosidase expression in the telencephalon and mesencephalon. Collectively, our experiments indicate that the HPD regulates L1 expression in neural tissues via homeodomain and Pax proteins and is likely to be a target of BMP signaling during development.