80 resultados para estrogen E2
Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists.
Resumo:
The estrogen receptor (ER) stimulates transcription of target genes by means of its two transcriptional activation domains, AF-1 in the N-terminal part of the receptor and AF-2 in its ligand-binding domain. AF-2 activity is dependent upon a putative amphipathic alpha-helix between residues 538 and 552 in the mouse ER. Point mutagenesis of conserved hydrophobic residues within this region reduces estrogen-dependent transcriptional activation without affecting hormone and DNA binding significantly. Here we show that these mutations dramatically alter the pharmacology of estrogen antagonists. Both tamoxifen and ICI 164,384 behave as strong agonists in HeLa cells expressing the ER mutants. In contrast to the wild-type ER, the mutant receptors maintain nuclear localization and DNA-binding activity after ICI 164,384 treatment. Structural alterations in AF-2 caused by gene mutations such as those described herein or by estrogen-independent signaling pathways may account for the insensitivity of some breast cancers to tamoxifen treatment.
Resumo:
Using RNA (Northern) blot hybridization and reverse transcription-PCR, we demonstrate that the brain-type cannabinoid receptor (CB1-R) mRNA, but not the spleen-type cannabinoid receptor (CB2-R) mRNA, is expressed in the mouse uterus and that this organ has the capacity to synthesize the putative endogenous cannabinoid ligand, anandamide (arachidonylethanolamide). The psychoactive cannabinoid component of marijuana--delta 9-tetrahydrocannabinol (THC)--or anandamide, but not the inactive and nonpsychoactive cannabidiol (CBD), inhibited forskolin-stimulated cyclic AMP formation in the mouse uterus, which was prevented by pertussis toxin pretreatment. These results suggest that uterine CB1-R is coupled to inhibitory guanine nucleotide-binding protein and is biologically active. Autoradiographic studies identified ligand binding sites ([3H]anandamide) in the uterine epithelium and stromal cells, suggesting that these cells are perhaps the targets for cannabinoid action. Scatchard analysis of the binding of [3H]WIN 55212-2, another cannabinoid receptor ligand, showed a single class of high-affinity binding sites in the endometrium with an apparent Kd of 2.4 nM and Bmax of 5.4 x 10(9) molecules per mg of protein. The gene encoding lactoferrin is an estrogen-responsive gene in the mouse uterus that was rapidly and transiently up-regulated by THC, but not by CBD, in ovariectomized mice in the absence of ovarian steroids. This effect, unlike that of 17 beta-estradiol (E2), was not influenced by a pure antiestrogen, ICI 182780, suggesting that the THC-induced uterine lactoferrin gene expression does not involve estrogen receptors. We propose that the uterus is a new target for cannabinoid ligand-receptor signaling.
Resumo:
A 5.2-kb mRNA band that contains estrogen receptor (ER) sequence and exhibits sex- and tissue-specific expression has been identified in rat pituitary via Northern analysis; this band is composed of at least two distinctive ER mRNA isoforms. This mRNA is expressed in high levels in female pituitary but is absent in male pituitary and uterus, whereas the mRNA encoding the full-length receptor (6.2 kb) is expressed in all the aforementioned tissues. Estradiol treatment potently induces the expression of the 5.2-kb band in the male pituitary. Oligonucleotide hybridization and ribonuclease-protection experiments indicate that the pituitary ER variant is missing exons 1-4. Two corresponding cDNA clones, truncated estrogen receptor product 1 and 2 (TERP-1 and TERP-2), were isolated by using the anchored PCR. Both sequences contain a 31-bp segment of specific sequence upstream of exon 5; TERP-2, however, contains an additional 66 bp of specific sequence between the 31-bp segment and exon 5. On Northern analysis, probes complementary to the 31-bp segment of specific sequence hybridize only to the 5.2-kb band. Immunoblotting identified several proteins in rat pituitary that could represent the translation products of these or related transcripts. In summary, several ER isoforms have been identified that exhibit both tissue-specific expression and marked estrogen regulation and differ from full-length receptor by virtue of sequence upstream of the exon 4/5 boundary. Physiologically, the putative proteins encoded by these or similar isoforms might be important modulators of the tissue- and promoter-specific effects of estradiol.
Resumo:
Pluripotent hematopoietic stem cells (PHSCs) were highly enriched from mouse bone marrow by counterflow centrifugal elutriation, lineage subtraction, and fluorescence-activated cell sorting based on high c-kit receptor expression (c-kitBR). We used reverse transcriptase polymerase chain reaction to assay the c-kitBR subset and the subsets expressing low (c-kitDULL) and no (c-kitNEG) c-kit receptor for expression of mRNA encoding hematopoietic growth factor receptors and transcription factors. The c-kitBR cells had approximately 3.5-fold more c-kit mRNA than unfractionated bone marrow cells. The c-kitDULL cells had 47-58% of the c-kit mRNA found in c-kitBR cells and the c-kitNEG cells had 4-9% of the c-kit mRNA present in c-kitBR cells. By comparing mRNA levels in c-kitBR cells (enriched for PHSCs) with those of unfractionated bone marrow, we demonstrated that c-kitBR cells contained low or undetectable levels of mRNA for c-fms, granulocyte colony-stimulating factor receptor, interleukin 5 receptor (IL-5R), and IL-7R. These same cells had moderate levels of mRNA for erythropoietin receptor, IL-3R subunits IL-3R alpha (SUT-1), AIC-2A, and AIC-2B, IL-6R and its partner gp-130, and the transcription factor GATA-1 and high levels of mRNA for transcription factors GATA-2, p45 NF-E2, and c-myb. We conclude from these findings that PHSCs are programmed to interact with stem cell factor, IL-3, and IL-6 but not with granulocyte or macrophage colony-stimulating factor. These findings also indicate that GATA-2, p45 NF-E2, and c-myb activities may be involved in PHSC maintenance or proliferation.
Resumo:
The transcription factor NF-E2 (nuclear factor erythroid 2), interacting via DNA motifs within regulatory regions of several hematopoietic genes, is thought to mediate the enhancer activity of the globin locus control regions. By screening a human fetal liver cDNA library with probes derived from mouse NF-E2, we have isolated a splicing variant of the NF-E2 gene (fNF-E2) that differs in the 5' untranslated region from the previously reported cDNA (aNF-E2). The fNF-E2 isoform is transcribed from an alternative promoter located in the 3' end of the first intron and joined by alternative splicing to the second and third exons, which are shared by both RNA isoforms. Although the two forms produce the same protein, they are expressed in different ratios during development. fNF-E2 is more abundant in the fetal liver and less abundant in the adult bone marrow compared to the previously described form. Their distribution apparently follows the differential expression of fetal and adult hemoglobins.