97 resultados para drug-DNA interactions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA fragments with stretches of cytosine residues can fold into four-stranded structures in which two parallel duplexes, held together by hemiprotonated cytosine.cytosine+ (C.C+) base pairs, intercalate into each other with opposite polarity. The structural details of this intercalated DNA quadruplex have been assessed by solution NMR and single crystal x-ray diffraction studies of cytosine-rich sequences, including those present in metazoan telomeres. A conserved feature of these structures is the absence of stabilizing stacking interactions between the aromatic ring systems of adjacent C.C+ base pairs from intercalated duplexes. Effective stacking involves only the exocyclic keto groups and amino groups of the cytidine bases. The apparent absence of stability provided by stacking interactions between the bases in this intercalated DNA has prompted us to examine the available structures in detail, in particular with regard to unusual features that could compensate for the lack of base stacking. In addition to base-on-deoxyribose stacking and intra-cytidine C-H...O hydrogen bonds, this analysis reveals the presence of a hitherto unobserved, systematic intermolecular C-H...O hydrogen bonding network between the deoxyribose sugar moieties of antiparallel backbones in the four-stranded molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human hepatitis B virus genome encodes a protein, termed HBx, that is widely recognized as a transcriptional transactivator. While HBx does not directly bind cis-acting transcriptional control elements, it has been shown to associate with cellular proteins that bind DNA. Because HBx transactivated a large number of viral/cellular transcriptional control elements, we looked for its targets within the components of the basal transcriptional machinery. This search led to the identification of its interactions with TFIIH. Here, we show that HBx interacts with yeast and mammalian TFIIH complexes both in vitro and in vivo. These interactions between HBx and the components of TFIIH are supported by several lines of evidence including results from immunoprocedures and direct methods of measuring interactions. We have identified ERCC3 and ERCC2 DNA helicase subunits of holoenzyme TFIIH as targets of HBx interactions. Furthermore, the DNA helicase activity of purified TFIIH from rat liver and, individually, the ERCC2 component of TFIIH is stimulated in the presence of HBx. These observations suggest a role for HBx in transcription and DNA repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used a novel site-specific protein-DNA photocrosslinking procedure to define the positions of polypeptide chains relative to promoter DNA in binary, ternary, and quaternary complexes containing human TATA-binding protein, human or yeast transcription factor IIA (TFIIA), human transcription factor IIB (TFIIB), and promoter DNA. The results indicate that TFIIA and TFIIB make more extensive interactions with promoter DNA than previously anticipated. TATA-binding protein, TFIIA, and TFIIB surround promoter DNA for two turns of DNA helix and thus may form a "cylindrical clamp" effectively topologically linked to promoter DNA. Our results have implications for the energetics, DNA-sequence-specificity, and pathway of assembly of eukaryotic transcription complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The whole genome sequence (1.83 Mbp) of Haemophilus influenzae strain Rd was searched to identify tandem oligonucleotide repeat sequences. Loss or gain of one or more nucleotide repeats through a recombination-independent slippage mechanism is known to mediate phase variation of surface molecules of pathogenic bacteria, including H. influenzae. This facilitates evasion of host defenses and adaptation to the varying microenvironments of the host. We reasoned that iterative nucleotides could identify novel genes relevant to microbe-host interactions. Our search of the Rd genome sequence identified 9 novel loci with multiple (range 6-36, mean 22) tandem tetranucleotide repeats. All were found to be located within putative open reading frames and included homologues of hemoglobin-binding proteins of Neisseria, a glycosyltransferase (IgtC gene product) of Neisseria, and an adhesin of Yersinia. These tetranucleotide repeat sequences were also shown to be present in two other epidemiologically different H. influenzae type b strains, although the number and distribution of repeats was different. Further characterization of the IgtC gene showed that it was involved in phenotypic switching of a lipopolysaccharide epitope and that this variable expression was associated with changes in the number of tetranucleotide repeats. Mutation of IgtC resulted in attenuated virulence of H. influenzae in an infant rat model of invasive infection. These data indicate the rapidity, economy, and completeness with which whole genome sequences can be used to investigate the biology of pathogenic bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vaccinia virus early transcription factor (VETF), a heterodimeric protein composed of 82- and 70-kDa subunits, interacts with viral early promoters at both a sequence-specific core region upstream and a sequence-independent region downstream of the RNA start site. To determine the VETF subunit-promoter interactions, 32P-labeled DNA targets were chemically synthesized with uniquely positioned phosphorothioates to which azidophenacyl bromide moieties were coupled. After incubating the derivatized promoter with VETF and exposing the complex to 302-nm light, the protein was denatured and the individual subunits with or without covalently bound DNA were isolated with specific antiserum and analyzed by SDS/polyacrylamide gel electrophoresis. Using a set of 26 duplex probes, with uniquely positioned aryl azide moieties on the coding or template strands, we found that the 82-kDa subunit interacted primarily with the core region of the promoter, whereas the 70-kDa subunit interacted with the downstream region. Nucleotide substitutions in the core region that downregulate transcription affected the binding of both subunits: the 82-kDa subunit no longer exhibited specificity for upstream regions of the promoter but also bound to downstream regions, whereas the binding of the 70-kDa subunit was abolished even though the mutations were far upstream of its binding site. These results suggested mechanisms by which the interaction of the 82-kDa subunit with the core sequence directs binding of the 70-kDa subunit to DNA downstream.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

cis-Diamminedichloroplatinum(II) (cisplatin) is a widely used anticancer drug that binds to and crosslinks DNA. The major DNA adduct of the drug results from coordination of two adjacent guanine bases to platinum to form the intrastrand crosslink cis-[Pt(NH3)2[d(GpG)-N7(1), -N7(2)]] (cis-Pt-GG). In the present study, spectroscopic and calorimetric techniques were employed to characterize the influence of this crosslink on the conformation, thermal stability, and energetics of a site-specifically platinated 20-mer DNA duplex. CD spectroscopic and thermal denaturation data revealed that the crosslink alters the structure of the host duplex, consistent with a shift from a B-like to an A-like conformation; lowers its thermal stability by approximately 9 degrees C; and reduces its thermodynamic stability by 6.3 kcal/mol at 25 degrees C, most of which is enthalpic in origin; but it does not alter the two-state melting behavior exhibited by the parent, unmodified duplex, despite the significant crosslink-induced changes noted above. The energetic consequences of the cis-Pt-GG crosslink are discussed in relation to the structural perturbations it induces in DNA and to how these crosslink-induced perturbations might modulate protein binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HMG-I proteins are DNA-binding proteins thought to affect the formation and function of transcription complexes. Each protein contains three DNA-binding motifs, known as AT-hooks, that bind in the minor groove of AT tracts in DNA. Multiple AT-hooks within a polypeptide chain should contact multiple AT tracts, but the rules governing these interactions have not been defined. In this study, we demonstrate that high-affinity binding uses two or three appropriately spaced AT tracts as a single multivalent binding site. These principles have implications for binding to regulatory elements such as the interferon beta enhancer, TATA boxes, and serum response elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binding of transcriptional activators to a promoter is a prerequisite process in transcriptional activation. It is well established that the efficiency of activator binding to a promoter is determined by the affinity of direct interactions between the DNA-binding domain of an activator and its specific target sequences. However, I describe here that activator binding to a promoter is augmented in vivo by the effects of two other determinants that have not been generally appreciated: (i) the number of activator binding sites present in a promoter and (ii) the potency of activation domains of activators. Multiple sites within a promoter can cooperatively recruit cognate factors regardless of whether they contain an effective activation domain. This cooperativity can result in the synergistic activation of transcription. The second effect is the enhancement of activator binding to a promoter by the presence of activation domains. In this case, activation domains are not simply tethered to the promoter by the DNA-binding domain but instead assist the DNA-binding domain being tethered onto the promoter. This effect of activation domains on DNA binding is instrumental in determining how potent activators can induce steep transcriptional increases at low concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results presented here demonstrate that the thermodynamics of oligocation binding to polymeric and oligomeric DNA are not equivalent because of long-range electrostatic effects. At physiological cation concentrations (0.1-0.3 M) the binding of an oligolysine octacation KWK6-NH2 (+8 charge) to single-stranded poly(dT) is much stronger per site and significantly more salt concentration dependent than the binding of the same ligand to an oligonucleotide, dT(pdT)10 (-10 charge). These large differences are consistent with Poisson-Boltzmann calculations for a model that characterizes the charge distributions with key preaveraged structural parameters. Therefore, both the experimental and the theoretical results presented here show that the polyelectrolyte character of a polymeric nucleic acid makes a large contribution to both the magnitude and the salt concentration dependence of its binding interactions with simple oligocationic ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integration host factor (IHF) is a DNA-bending protein that binds to an upstream activating sequence (UAS1) and, on a negatively supercoiled DNA template, activates transcription from the ilvPG promoter of the ilvG-MEDA operon of Escherichia coli. The transcriptional initiation site of the ilvGMEDA operon is located 92 bp downstream of UAS1. Activation is still observed when the orientation of the upstream IHF binding site is reversed. This manipulation places the IHF binding site on the opposite face of the DNA helix, directs the IHF-induced DNA bend in the opposite direction, and presents the opposite face of the nonsymmetrical, heterodimeric, IHF molecule to the downstream RNA polymerase. Lymphoid enhancer-binding factor, LEF-1, is a DNA-bending, lymphoid-specific, mammalian transcription factor that shares no amino acid sequence similarity with IHF. When the IHF site in UAS1 is replaced with a LEF-1 site, LEF-1 activates transcription from the downstream ilvPG promoter in E. coli as well as it is activated by its natural activator, IHF. These results suggest that specific interactions between IHF and RNA polymerase are not required for activation. The results of DNA structural studies show that IHF forms a protein-DNA complex in the UAS1 region that, in the absence of RNA polymerase, alters the structure of the DNA helix in the -10 hexanucleotide region of the downstream ilvPG promoter. The results of in vitro abortive transcription assays show that IIIF also increases the apparent rate of RNA polymerase isomerization from a closed to an open complex. We suggest, therefore, that IHF activates transcription by forming a higher-order protein-DNA complex in the UAS1 region that structurally alters the DNA helix in a way that facilitates open complex formation at the downstream ilvPG promoter site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A capillary electrophoresis method has been developed to study DNA-protein complexes by mobility-shift assay. This method is at least 100 times more sensitive than conventional gel mobility-shift procedures. Key features of the technique include the use of a neutral coated capillary, a small amount of linear polymer in the separation medium, and use of covalently dye-labeled DNA probes that can be detected with a commercially available laser-induced fluorescence monitor. The capillary method provides quantitative data in runs requiring < 20 min, from which dissociation constants are readily determined. As a test case we studied interactions of a developmentally important sea urchin embryo transcription factor, SpP3A2. As little as 2-10 x 10(6) molecules of specific SpP3A2-oligonucleotide complex were reproducibly detected, using recombinant SpP3A2, crude nuclear extract, egg lysates, and even a single sea urchin egg lysed within the capillary column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Epstein-Barr virus-encoded protein BZLF1 is a member of the basic leucine zipper (bZip) family of transcription factors. Like several other members of the bZip family, transcriptional activity of BZLF1 is modulated by retinoic acid receptors (RARs). We present evidence that the RAR alpha and BZLF1 can reciprocally repress each other's transcriptional activation by a newly discovered mechanism. Analysis of RAR alpha mutants in transfection studies reveals that the DNA binding domain is sufficient for inhibition of BZLF1 activity. Analysis of BZLF1 mutants indicates that both the coiled-coil dimerization domain and a region containing the transcriptional activation domain of BZLF1 are required for transrepression. Coimmunoprecipitation experiments demonstrate physical interactions between RAR alpha and BZLF1 in vivo. Furthermore, glutathione S-transferase-pulldown assays reveal that these protein-protein interactions are mediated by the coiled-coil dimerization domain of BZLF1 and the DNA binding domain of RAR alpha. While RAR alpha is unable to recognize BZLF1 binding sites, the RAR alpha can be tethered to the DNA by forming a heteromeric complex with BZLF1 bound to DNA. Tethering RARs via protein-protein interactions onto promoter DNA suggest a mechanism through which RARs might gain additional levels of transcriptional regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enzymatic incorporation of 2',3'-dideoxynucleotides into DNA results in chain termination. We report that 3'-esterified 2'-deoxynucleoside 5'-triphosphates (dNTPs) are false chain-terminator substrates since DNA polymerases, including human immunodeficiency virus reverse transcriptase, can incorporate them into DNA and, subsequently, use this new 3' end to insert the next correctly paired dNTP. Likewise, a DNA substrate with a primer chemically esterified at the 3' position can be extended efficiently upon incubation with dNTPs and T7 DNA polymerase lacking 3'-to-5' exonuclease activity. This enzyme is also able to use dTTP-bearing reporter groups in the 3' position conjugated through amide or thiourea bonds and cleave them to restore a DNA chain terminated by an amino group at the 3' end. Hence, a number of DNA polymerases exhibit wide catalytic versatility at the 3' end of the nascent DNA strand. As part of the polymerization mechanism, these capabilities extend the number of enzymatic activities associated with these enzymes and also the study of interactions between DNA polymerases and nucleotide analogues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solution structures of calicheamicin gamma 1I, its cycloaromatized analog (calicheamicin epsilon), and its aryl tetrasaccharide complexed to a common DNA hairpin duplex have been determined by NMR and distance-refined molecular dynamics computations. Sequence specificity is associated with carbohydrate-DNA recognition that places the aryl tetrasaccharide component of all three ligands in similar orientations in the minor groove at the d(T-C-C-T).d(A-G-G-A) segment. The complementary fit of the ligands and the DNA minor groove binding site creates numerous van der Waals contacts as well as hydrogen bonding interactions. Notable are the iodine and sulfur atoms of calicheamicin that hydrogen bond with the exposed amino proton of the 5'- and 3'-guanines, respectively, of the d(A-G-G-A) segment. The sequence-specific carbohydrate binding orients the enediyne aglycone of calicheamicin gamma 1I such that its C3 and C6 proradical centers are adjacent to the cleavage sites. While the enediyne aglycone of calicheamicin gamma 1I is tilted relative to the helix axis and spans the minor groove, the cycloaromatized aglycone is aligned approximately parallel to the helix axis in the respective complexes. Specific localized conformational perturbations in the DNA have been identified from imino proton complexation shifts and changes in specific sugar pucker patterns on complex formation. The helical parameters for the carbohydrate binding site are comparable with corresponding values in B-DNA fibers while a widening of the groove is observed at the adjacent aglycone binding site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously reported an enhanced version of sequencing by hybridization (SBH), termed positional SBH (PSBH). PSBH uses partially duplex probes containing single-stranded 3' overhangs, instead of simple single-stranded probes. Stacking interactions between the duplex probe and a single-stranded target allow us to reduce the probe sizes required to 5-base single-stranded overhangs. Here we demonstrate the use of PSBH to capture relatively long single-stranded DNA targets and perform standard solid-state Sanger sequencing on these primer-template complexes without ligation. Our results indicate that only 5 bases of known terminal sequence are required for priming. In addition, the partially duplex probes have the ability to capture their specific target from a mixture of five single-stranded targets with different 3'-terminal sequences. This indicates the potential utility of the PSBH approach to sequence mixtures of DNA targets without prior purification.