258 resultados para cellular nucleic acid-binding protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human transcription factor B-TFIID is comprised of TATA-binding protein (TBP) in complex with one TBP-associated factor (TAF) of 170 kDa. We report the isolation of the cDNA for TAFII170. By cofractionation and coprecipitation experiments, we show that the protein encoded by the cDNA encodes the TAF subunit of B-TFIID. Recombinant TAFII170 has (d)ATPase activity. Inspection of its primary structure reveals a striking homology with genes of other organisms, yeast MOT1, and Drosophila moira, which belongs to the Trithorax group. Both homologs were isolated in genetic screens as global regulators of pol II transcription. This supports our classification of B-TFIID as a pol II transcription factor and suggests that specific TBP–TAF complexes perform distinct functions during development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paraneoplastic opsoclonus myoclonus ataxia (POMA) is a neurologic disorder thought to be mediated by an autoimmune attack against onconeural disease antigens that are expressed by gynecologic or lung tumors and by neurons. One POMA disease antigen, termed Nova-1, has been identified as a neuron-specific KH-type RNA-binding protein. Nova-1 expression is restricted to specific regions of the central nervous system, primarily the hindbrain and ventral spinal cord, which correlate with the predominantly motor symptoms in POMA. However, POMA antisera recognize antigens that are widely expressed in both caudal and rostral regions of the central nervous system, and some patients develop cognitive symptoms. We have used POMA antisera to clone a cDNA encoding a second POMA disease antigen termed Nova-2. Nova-2 is closely related to Nova-1, and is expressed at high levels in neurons during development and in adulthood, and at lower levels in the adult lung. In the postnatal mouse brain, Nova-2 is expressed in a pattern that is largely reciprocal with Nova-1, including high levels of Nova-2 expression in the neocortex and hippocampus. Functional characterization of Nova-2 in RNA selection and nitrocellulose filter-binding assays reveals that Nova-2 binds RNA with high affinity and with sequence specificity that differs from Nova-1. Our results demonstrate that the immune response in POMA targets a family of highly related sequence-specific neuronal RNA-binding proteins. The expression pattern of the Nova-2 protein is likely to underlie the development of cognitive deficits in some POMA patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association of the TATA binding protein (TBP) to eukaryotic promoters is a possible rate-limiting step in gene expression. Slow promoter binding might be related to TBP’s ability to occlude its DNA binding domain through dimerization. Using a “pull-down” based assay, we find that TBP dimers dissociate slowly (t½ = 6–10 min), and thus present a formidable kinetic barrier to TATA binding. At 10 nM, TBP appears to exist as a mixed population of monomers and dimers. In this state, TATA binding displays burst kinetics that appears to reflect rapid binding of monomers and slow dissociation of dimers. The kinetics of the slow phase is in excellent agreement with direct measurements of the kinetics of dimer dissociation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth of a glutamate transport-deficient mutant of Rhodobacter sphaeroides on glutamate as sole carbon and nitrogen source can be restored by the addition of millimolar amounts of Na+. Uptake of glutamate (Kt of 0.2 μM) by the mutant strictly requires Na+ (Km of 25 mM) and is inhibited by ionophores that collapse the proton motive force (pmf). The activity is osmotic-shock-sensitive and can be restored in spheroplasts by the addition of osmotic shock fluid. Transport of glutamate is also observed in membrane vesicles when Na+, a proton motive force, and purified glutamate binding protein are present. Both transport and binding is highly specific for glutamate. The Na+-dependent glutamate transporter of Rb. sphaeroides is an example of a secondary transport system that requires a periplasmic binding protein and may define a new family of bacterial transport proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleic acid sequence-based amplification (NASBA) has proved to be an ultrasensitive method for HIV-1 diagnosis in plasma even in the primary HIV infection stage. This technique was combined with fluorescence correlation spectroscopy (FCS) which enables online detection of the HIV-1 RNA molecules amplified by NASBA. A fluorescently labeled DNA probe at nanomolar concentration was introduced into the NASBA reaction mixture and hybridizing to a distinct sequence of the amplified RNA molecule. The specific hybridization and extension of this probe during amplification reaction, resulting in an increase of its diffusion time, was monitored online by FCS. As a consequence, after having reached a critical concentration of 0.1–1 nM (threshold for unaided FCS detection), the number of amplified RNA molecules in the further course of reaction could be determined. Evaluation of the hybridization/extension kinetics allowed an estimation of the initial HIV-1 RNA concentration that was present at the beginning of amplification. The value of initial HIV-1 RNA number enables discrimination between positive and false-positive samples (caused for instance by carryover contamination)—this possibility of discrimination is an essential necessity for all diagnostic methods using amplification systems (PCR as well as NASBA). Quantitation of HIV-1 RNA in plasma by combination of NASBA with FCS may also be useful in assessing the efficacy of anti-HIV agents, especially in the early infection stage when standard ELISA antibody tests often display negative results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TATA-binding protein (TBP)-related factor TRF1, has been described in Drosophila and a related protein, TRF2, has been found in a variety of higher eukaryotes. We report that human (h)TRF2 is encoded by two mRNAs with common protein coding but distinct 5′ nontranslated regions. One mRNA is expressed ubiquitously (hTRF2-mRNA1), whereas the other (hTRF2-mRNA2) shows a restricted expression pattern and is extremely abundant in testis. In addition, we show that hTRF2 forms a stable stoichiometric complex with hTFIIA, but not with TAFs, in HeLa cells stably transfected with flag-tagged hTRF2. Neither recombinant human (rh)TRF2 nor the native flag⋅hTRF2-TFIIA complex is able to replace TBP or TFIID in basal or activated transcription from various RNA polymerase II promoters. Instead, rhTRF2, but not the flag⋅hTRF2–TFIIA complex, moderately inhibits basal or activated transcription in the presence of rhTBP or flag⋅TFIID. This effect is either completely (TBP-mediated transcription) or partially (TFIID-mediated transcription) counteracted by addition of free TFIIA. Neither rhTRF2 nor flag⋅hTRF2–TFIIA has any effect on the repression of TFIID-mediated transcription by negative cofactor-2 (NC2) and neither substitutes for TBP in RNA polymerase III-mediated transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymorphonuclear leukocytes are essential for host defense to infectious diseases. CCAAT/enhancer binding protein ɛ (C/EBPɛ) is preferentially expressed in granulocytes and lymphoid cells. Mice with a null mutation in C/EBPɛ develop normally and are fertile but fail to generate functional neutrophils and eosinophils. Opportunistic infections and tissue destruction lead to death by 3–5 months of age. Furthermore, end-stage mice develop myelodysplasia, characterized by proliferation of atypical granulocytes that efface the bone marrow and result in severe tissue destruction. Thus, C/EBPɛ is essential for terminal differentiation and functional maturation of committed granulocyte progenitor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myotonic dystrophy (DM) is associated with expansion of CTG repeats in the 3′-untranslated region of the myotonin protein kinase (DMPK) gene. The molecular mechanism whereby expansion of the (CUG)n repeats in the 3′-untranslated region of DMPK gene induces DM is unknown. We previously isolated a protein with specific binding to CUG repeat sequences (CUG-BP/hNab50) that possibly plays a role in mRNA processing and/or transport. Here we present evidence that the phosphorylation status and intracellular distribution of the RNA CUG-binding protein, identical to hNab50 protein (CUG-BP/hNab50), are altered in homozygous DM patient and that CUG-BP/hNab50 is a substrate for DMPK both in vivo and in vitro. Data from two biological systems with reduced levels of DMPK, homozygous DM patient and DMPK knockout mice, show that DMPK regulates both phosphorylation and intracellular localization of the CUG-BP/hNab50 protein. Decreased levels of DMPK observed in DM patients and DMPK knockout mice led to the elevation of the hypophosphorylated form of CUG-BP/hNab50. Nuclear concentration of the hypophosphorylated CUG-BP/hNab50 isoform is increased in DMPK knockout mice and in homozygous DM patient. DMPK also interacts with and phosphorylates CUG-BP/hNab50 protein in vitro. DMPK-mediated phosphorylation of CUG-BP/hNab50 results in dramatic reduction of the CUG-BP2, hypophosphorylated isoform, accumulation of which was observed in the nuclei of DMPK knockout mice. These data suggest a feedback mechanism whereby decreased levels of DMPK could alter phosphorylation status of CUG-BP/hNab50, thus facilitating nuclear localization of CUG-BP/hNab50. Our results suggest that DM pathophysiology could be, in part, a result of sequestration of CUG-BP/hNab50 and, in part, of lowered DMPK levels, which, in turn, affect processing and transport of specific subclass of mRNAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

rRNA synthesis by RNA polymerase I requires both the promoter selectivity factor 1, which is composed of TATA binding protein (TBP) and three TBP-associated factors, and the activator upstream binding factor (UBF). Whereas there is strong evidence implicating a role for phosphorylation of UBF in the control of growth-induced increases in rRNA transcription, the mechanism of this effect is not known. Results of immunoprecipitation studies with TBP antibodies showed increased recovery of phosphorylated UBF from growth-stimulated smooth muscle cells. Moreover, using an immobilized protein-binding assay, we found that phosphorylation of UBF in vivo in response to stimulation with different growth factors or in vitro with smooth muscle cell nuclear extract increased its binding to TBP. Finally, we demonstrated that UBF–TBP binding depended on the C-terminal ‘acidic tail’ of UBF that was hyperphosphorylated at multiple serine sites after growth factor stimulation. Results of these studies suggest that phosphorylation of UBF and subsequent binding to TBP represent a key regulatory step in control of growth-induced increases in rRNA synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have cloned and sequenced cDNA for human karyopherin β2, also known as transportin. In a solution binding assay, recombinant β2 bound directly to recombinant nuclear mRNA-binding protein A1. Binding was inhibited by a peptide representing A1’s previously characterized M9 nuclear localization sequence (NLS), but not by a peptide representing a classical NLS. As previously shown for karyopherin β1, karyopherin β2 bound to several nucleoporins containing characteristic peptide repeat motifs. In a solution binding assay, both β1 and β2 competed with each other for binding to immobilized repeat nucleoporin Nup98. In digitonin-permeabilized cells, β2 was able to dock A1 at the nuclear rim and to import it into the nucleoplasm. At low concentrations of β2, there was no stimulation of import by the exogenous addition of the GTPase Ran. However, at higher concentrations of β2 there was marked stimulation of import by Ran. Import was inhibited by the nonhydrolyzable GTP analog guanylyl imidodiphosphate by a Ran mutant that is unable to hydrolyze GTP and also by wheat germ agglutinin. Consistent with the solution binding results, karyopherin β2 inhibited karyopherin α/β1-mediated import of a classical NLS containing substrate and, vice versa, β1 inhibited β2-mediated import of A1 substrate, suggesting that the two import pathways merge at the level of docking of β1 and β2 to repeat nucleoporins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fish serum contains several specific binding proteins for insulin-like growth factors (IGFBPs). The structure and physiological function of these fish IGFBPs are unknown. Here we report the complete primary sequence of a zebrafish IGFBP deduced from cDNA clones isolated by library screening and rapid amplification of cDNA ends. The full-length 1,757-bp cDNA encodes a protein of 276 aa, which contains a putative 22-residue signal peptide and a 254-residue mature protein. The mature zebrafish IGFBP has a predicted molecular size of 28,440 Da and shows high sequence identity with human IGFBP-2 (52%). The sequence identities with other human IGFBPs are <37%. Chinese hamster ovary cells stably transfected with the zebrafish IGFBP-2 cDNA secreted a 31-kDa protein, which bound to IGF-I and IGF-II with high affinity, but did not bind to Des(1–3)IGF-I or insulin. Northern blot analyses revealed that the zebrafish IGFBP-2 transcript is a 1.8-kb band expressed in many embryonic and adult tissues. In adult zebrafish, IGFBP-2 mRNA levels were greatly reduced by growth hormone treatment but increased by prolonged fasting. When overexpressed or added to cultured zebrafish and mammalian cells, the zebrafish IGFBP-2 significantly inhibited IGF-I-stimulated cell proliferation and DNA synthesis. These results indicate that zebrafish IGFBP-2 is a negative growth regulator acting downstream in the growth hormone-IGF-I axis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FKBP52 (HSP56, p59, HBI) is the 59-kDa immunosuppressant FK506-binding protein and has peptidyl prolyl isomerase as well as a chaperone-like activity in vitro. FKBP52 associates with the heat shock protein HSP90 and is included in the steroid hormone receptor complexes in vivo. FKBP52 possesses a well conserved phosphorylation site for casein kinase II (CK2) that was previously shown to be associated with HSP90. Here we examined whether FKBP52 is phosphorylated by CK2 both in vivo and in vitro. Recombinant rabbit FKBP52 was phosphorylated by purified CK2. We expressed and purified deletion mutants of FKBP52 to determine the site(s) phosphorylated by CK2. Thr-143 in the hinge I region was identified as the major phosphorylation site for CK2. A synthetic peptide corresponding to this region was phosphorylated by CK2, and the peptide competitively inhibited the phosphorylation of other substrates by CK2. The [32P]phosphate labeling of FKBP52-expressing cells revealed that the same site is also phosphorylated in vivo. FK506 binding to FKBP52 did not affect the phosphorylation by CK2 and, conversely, the FK506-binding activity of FKBP52 was not affected by the phosphorylation. Most importantly, CK2-phosphorylated FKBP52 did not bind to HSP90. These results indicate that CK2 phosphorylates FKBP52 both in vitro and in vivo and thus may regulate the protein composition of chaperone-containing complexes such as those of steroid receptors and certain protein kinases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stem-loop binding protein (SLBP1) binds the 3′ stem-loop of histone pre-mRNA and is required for efficient processing of histone transcripts in the nucleus. We examined the localization of SLBP1 in the germinal vesicle of Xenopus laevis oocytes. In spread preparations of germinal vesicle contents, an anti-SLBP1 antibody stained coiled bodies and specific chromosomal loci, including terminal granules, axial granules, and some loops. After injection of myc-tagged SLBP1 transcripts into the oocyte cytoplasm, newly translated myc-SLBP1 protein was detectable in coiled bodies within 4 h and in terminal and axial granules by 8 h. To identify the region(s) of SLBP1 necessary for subnuclear localization, we subcloned various parts of the SLBP1 cDNA and injected transcripts of these into the cytoplasm of oocytes. We determined that 113 amino acids at the carboxy terminus of SLBP1 are sufficient for coiled body localization and that disruption of a previously defined RNA-binding domain did not alter this localization. Coiled bodies also contain the U7 small nuclear ribonucleoprotein particle (snRNP), which participates in cleavage of the 3′ end of histone pre-mRNA. The colocalization of SLBP1 and the U7 snRNP in the coiled body suggests coordinated control of their functions, perhaps through a larger histone-processing particle. Some coiled bodies are attached to the lampbrush chromosomes at the histone gene loci, consistent with the view that coiled bodies in the oocyte recruit histone-processing factors to the sites of histone pre-mRNA transcription. The non-histone chromosomal sites at which SLBP1 is found include the genes coding for 5 S rRNA, U1 snRNA, and U2 snRNA, suggesting a wider role for SLBP1 in the biosynthesis of small non-spliced RNAs.