193 resultados para Transcription Factor 7-Like 2 Protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription factor IIH (TFIIH) is a multisubunit protein complex essential for both the initiation of RNA polymerase class II (pol II)-catalyzed transcription and nucleotide excision repair of DNA. Recent studies have shown that TFIIH copurifies with the cyclin-dependent kinase (cdk)-activating kinase complex (CAK) that includes cdk7, cyclin H, and p36/MAT1. Here we report the isolation of two TFIIH-related complexes: TFIIH* and ERCC2/CAK. TFIIH* consists of a subset of the TFIIH complex proteins including ERCC3 (XPB), p62, p44, p41, and p34 but is devoid of detectable levels of ERCC2 (XPD) and CAK. ERCC2/CAK was isolated as a complex that exhibits CAK activity that cosediments with the three CAK components (cdk7, cyclin H, and p36/MAT1) as well as the ERCC2 (XPD) protein. TFIIH* can support pol II-catalyzed transcription in vitro with lower efficiency compared with TFIIH. This TFIIH*-dependent transcription reaction was stimulated by ERCC2/CAK. The ERCC2/CAK and TFIIH* complexes are each active in DNA repair as shown by their ability to complement extracts prepared from ERCC2 (XPD)- and ERCC3 (XPB)-deficient cells, respectively, in supporting the excision of DNA containing a cholesterol lesion. These data suggest that TFIIH* and ERCC2/CAK interact to form the TFIIH holoenzyme capable of efficiently assembling the pol II transcription initiation complex and directly participating in excision repair reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human transcription factor IIA (TFIIA) is composed of three subunits (alpha, beta, and gamma). TFIIA interacts with the TATA-box binding protein and can overcome repression of transcription. TFIIA was found to be necessary for VP16-mediated transcriptional activation through a coactivator function. We have separated the coactivator and antirepression activities of TFIIA. A TFIIA lacking the alpha subunit was isolated from HeLa cells. This "mini-TFIIA" interacts with the TATA-box binding protein and can overcome repression of transcription, but it is defective in transcriptional coactivator function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TRAF1 and TRAF2 form an oligomeric complex that associates with the cytoplasmic domains of various members of the tumor necrosis factor (TNF) receptor superfamily. TRAF2 action is required for activation of the transcription factor NF-kappaB triggered by TNF and the CD40 ligand. Here we show that TRAF1 and TRAF2 interact with A20, a zinc finger protein, whose expression is induced by agents that activate NF-kappaB. Mutational analysis revealed that the N-terminal half of A20 interacts with the conserved C-terminal TRAF domain of TRAF1 and TRAF2. In cotransfection experiments, A20 blocked TRAF2-mediated NF-kappaB activation. A20 also inhibited TNF and IL-1-induced NF-kappaB activation, suggesting that it may inhibit NF-kappaB activation signaled by diverse stimuli. The ability of A20 to block NF-kappaB activation was mapped to its C-terminal zinc finger domain. Thus, A20 is composed of two functionally distinct domains, an N-terminal TRAF binding domain that recruits A20 to the TRAF2-TRAF1 complex and a C-terminal domain that mediates inhibition of NF-kappaB activation. Our findings suggest a possible molecular mechanism that could explain A20's ability to negatively regulate its own TNF-inducible expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ob gene product, leptin, apparently exclusively expressed in adipose tissue, is a signaling factor regulating body weight homeostasis and energy balance. ob gene expression is increased in obese rodents and regulated by feeding, insulin, and glucocorticoids, which supports the concept that ob gene expression is under hormonal control, which is expected for a key factor controlling body weight homeostasis and energy balance. In humans, ob mRNA expression is increased in gross obesity; however, the effects of the above factors on human ob expression are unknown. We describe the structure of the human ob gene and initial functional analysis of its promoter. The human ob gene's three exons cover approximately 15 kb of genomic DNA. The entire coding region is contained in exons 2 and 3, which are separated by a 2-kb intron. The first small 30-bp untranslated exon is located >10.5 kb upstream of the initiator ATG codon. Three kilobases of DNA upstream of the transcription start site has been cloned and characterized. Only 217 bp of 5' sequence are required for basal adipose tissue-specific expression of the ob gene as well as enhanced expression by C/EBPalpha. Mutation of the single C/EBPalpha site in this region abolished inducibility of the promoter by C/EBPalpha in cotransfection assays. The gene structure will facilitate our analysis of ob mutations in human obesity, whereas knowledge of sequence elements and factors regulating ob gene expression should be of major importance in the prevention and treatment of obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Notch is a transmembrane receptor that plays a critical role in cell fate determination. In Drosophila, Notch binds to and signals through Suppressor of Hairless. A mammalian homologue of Suppressor of Hairless, named CBF1 (or RBPJk), is a ubiquitous transcription factor whose function in mammalian Notch signaling is unknown. To determine whether mammalian Notch can stimulate transcription through a CBF1-responsive element (RE), we cotransfected a CBF1-RE-containing chloramphenicol acetyltransferase reporter and N1(deltaEC), a constitutively active form of human Notch1 lacking the extracellular domain, into DG75, COS-1, HeLa, and 293T cells, which all contain endogenous CBF1. N1(deltaEC) dramatically increased chloramphenicol acetyltransferase activity in these cells, indicating functional coupling of Notch1 and CBF1. The activity was comparable to that produced by the Epstein-Barr virus protein EBNA2, a well-characterized, potent transactivator of CBF1. To test whether CBF1 and Notch1 interact physically, we tagged CBF1 with an epitope from the influenza virus hemagglutinin or with the N-terminal domain of gal4, and transfected the tagged CBF1 plus N1(deltaEC) into COS-1 cells. Cell lysates were immunoprecipitated and immunoblotted with several anti-Notch1 antibodies [to detect N1(deltaEC)] or with antibodies to hemagglutinin or gal4 (to detect CBF1). Each immunoprecipitate contained a complex of N1(deltaEC) and CBF1. In summary, we find that the truncated, active form of human Notch1, N1(deltaEC), binds CBF1 and activates transcription through a CBF1-RE-containing promoter. We conclude that CBF1 is a critical downstream protein in the human Notch1 signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human immunodeficiency virus type 1 (HIV-1) Rev protein is required for nuclear export of late HIV-1 mRNAs. This function is dependent on the mutationally defined Rev activation domain, which also forms a potent nuclear export signal. Transcription factor IIIA (TFIIIA) binds to 5S rRNA transcripts and this interaction has been proposed to play a role in the efficient nuclear export of 5S rRNA in amphibian oocytes. Here it is reported that amphibian TFIIIA proteins contain a sequence element with homology to the Rev activation domain that effectively substitutes for this domain in inducing the nuclear export of late HIV-1 mRNAs. It is further demonstrated that this TFIIIA sequence element functions as a protein nuclear export signal in both human cells and frog oocytes. Thus, this shared protein motif may play an analogous role in mediating the nuclear export of both late HIV-1 RNAs and 5S rRNA transcripts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of results point to the transcription factor E2F as a critical determinant of the G1/S-phase transition during the cell cycle in mammalian cells, serving to activate the transcription of a group of genes that encode proteins necessary for DNA replication. In addition, E2F activity appears to be directly regulated by the action of retinoblastoma protein (RB) and RB-related proteins and indirectly regulated through the action of G1 cyclins and associated kinases. We now show that the accumulation of G1 cyclins is regulated by E2F1. E2F binding sites are found in both the cyclin E and cyclin D1 promoters, both promoters are activated by E2F gene products, and at least for cyclin E, the E2F sites contribute to cell cycle-dependent control. Most important, the endogenous cyclin E gene is activated following expression of the E2F1 product encoded by a recombinant adenovirus vector. These results suggest the involvement of E2F1 and cyclin E in an autoregulatory loop that governs the accumulation of critical activities affecting the progression of cells through G1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GATA-1 is a zinc-finger transcription factor that plays a critical role in the normal development of hematopoietic cell lineages. In human and murine erythroid cells a previously undescribed 40-kDa protein is detected with GATA-1-specific antibodies. We show that the 40-kDa GATA-1 (GATA-1s) is produced by the use of an internal AUG initiation codon in the GATA-1 transcript. The GATA-1 proteins share identical binding activity and form heterodimers in erythroleukemic cells but differ in their transactivation potential and in their expression in developing mouse embryos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In conjunction with other general initiation factors, the TATA box-binding protein (TBP) can direct basal transcription by RNA polymerase II from TATA-containing promoters, but its stable interaction with TBP-associated factors (TAFs) in the TFIID complex is required both for activator-dependent transcription and for basal transcription directed by an initiator element. We have generated a TATA-binding-defective TFIID complex containing an amino acid substitution in the DNA-binding surface of its TBP subunit. This mutated TFIID is defective in both basal and activated transcription from core promoters containing only a TATA box but supports transcription from initiator-containing promoters independently of the presence or absence of a TATA sequence. Our results show that a functional initiator element is needed to bypass the requirement for an active TATA DNA-binding surface in TFIID and imply that gene-specific transcription can be achieved by modulating distinct core promoter-specific TFIID functions--e.g., TBP-TATA versus TAF-initiator interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 243-amino acid adenovirus E1A oncoprotein both positively and negatively modulates the expression of cellular genes involved in the regulation of cell growth. The E1A transcription repression function appears to be linked with its ability to induce cellular DNA synthesis, cell proliferation, and cell transformation, as well as to inhibit cell differentiation. The mechanism by which E1A represses the transcription of various promoters has proven enigmatic. Here we provide several lines of evidence that the "TATA-box" binding protein (TBP) component of transcription factor TFIID is a cellular target of the E1A repression function encoded within the E1A N-terminal 80 amino acids. (i) The E1A N-terminal 80 amino acids [E1A-(1-80)protein] efficiently represses basal transcription from TATA-containing core promoters in vitro. (ii) TBP reverses completely E1A repression in vitro. (iii) TBP restores transcriptional activity to E1A-(1-80) protein affinity-depleted nuclear extracts. (iv) The N-terminal repression domain of E1A interacts directly and specifically with TBP in vitro. These results may help explain how E1A represses a set of genes that lack common upstream promoter elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L-Glutamate is the most common excitatory neurotransmitter in the brain and plays a crucial role in neuronal plasticity as well as in neurotoxicity. While a large body of literature describes the induction of immediate-early genes, including c-fos, fosB, c-jun, junB, zif/268, and krox genes by glutamate and agonists in neurons, very little is known about preexisting transcription factors controlling the induction of such genes. This prompted us to investigate whether stimulation of glutamate receptors can activate NF-kappa B, which is present in neurons in either inducible or constitutive form. Here we report that brief treatments with kainate or high potassium strongly activated NF-kappa B in granule cells from rat cerebellum. This was detected at the single cell level by immunostaining with a monoclonal antibody that selectively reacts with the transcriptionally active, nuclear form of NF-kappa B p65. The activation of NF-kappa B could be blocked with the antioxidant pyrrolidine dithiocarbamate, suggesting the involvement of reactive oxygen intermediates. The data may explain the kainate-induced cell surface expression of major histocompatibility complex class I molecules, which are encoded by genes known to be controlled by NF-kappa B. Moreover, NF-kappa B activity was found to change dramatically in neurons during development of the cerebellum between days 5 and 7 after birth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factor GATA-1 recognizes a consensus motif present in regulatory regions of numerous erythroid-expressed genes. Mouse embryonic stem cells lacking GATA-1 cannot form mature red blood cells in vivo. In vitro differentiation of GATA-1- embryonic stem cells gives rise to a population of committed erythroid precursors that exhibit developmental arrest and death. We show here that the demise of GATA-1- erythroid cells is accompanied by several features characteristics of apoptosis. This process occurs despite normal expression of all known GATA target genes examined, including the erythropoietin receptor, and independent of detectable accumulation of the tumor suppressor protein p53. Thus, in addition to its established role in regulating genes that define the erythroid phenotype, GATA-1 also supports the viability of red cell precursors by suppressing apoptosis. These results illustrate the multifunctional nature of GATA-1 and suggest a mechanism by which other hematopoietic transcription factors may ensure the development of specific lineages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TFC5, the unique and essential gene encoding the B" component of the Saccharomyces cerevisiae RNA polymerase III transcription factor (TF)IIIB has been cloned. It encodes a 594-amino acid protein (67,688 Da). Escherichia coli-produced B" has been used to reconstitute entirely recombinant TFIIIB that is fully functional for TFIIIC-directed, as well as TATA box-dependent, DNA binding and transcription. The DNase I footprints of entirely recombinant TFIIIB, composed of B", the 67-kDa Brf, and TATA box-binding protein, and TFIIIB reconstituted with natural B" are indistinguishable. A truncated form of B" lacking 39 N-terminal and 107 C-terminal amino acids is also functional for transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein-protein interactions involving specific transactivation domains play a central role in gene transcription and its regulation. The promoter-specific transcription factor Sp1 contains two glutamine-rich transcriptional activation domains (A and B) that mediate direct interactions with the transcription factor TFIID complex associated with RNA polymerase II and synergistic effects involving multiple Sp1 molecules. In the present study, we report the complementary DNA sequence for an alternatively spliced form of mouse Sp1 (mSp1-S) that lacks one of the two glutamine-rich activation regions present in the full-length protein. Corresponding transcripts were identified in mouse tissues and cell lines, and an Sp1-related protein identical in size to that predicted for mSp1-S was detected in mouse nuclear extracts. Cotransfection analysis revealed that mSp1-S lacks appreciable activity at promoters containing a single Sp1 response element but is active when multiple Sp1 sites are present, suggesting synergistic interactions between multiple mSp1-S molecules. The absence of a single glutamine-rich domain does not fully explain the properties of the smaller protein and indicates that additional structural features account for its unique transcriptional activity. The functional implications of this alternatively spliced form of Sp1 are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic exposure of HIT-T15 beta cells to elevated glucose concentrations leads to decreased insulin gene transcription. The reduction in expression is accompanied by diminished binding of a glucose-sensitive transcription factor (termed GSTF) that interacts with two (A+T)-rich elements within the 5' flanking control region of the insulin gene. In this study we examined whether GSTF corresponds to the recently cloned insulin gene transcription factor STF-1, a homeodomain protein whose expression is restricted to the nucleus of endodermal cells of the duodenum and pancreas. We found that an affinity-purified antibody recognizing STF-1 supershifted the GSTF activator complex formed from HIT-T15 extracts. In addition, we demonstrated a reduction in STF-1 mRNA and protein levels that closely correlated with the change in GSTF binding in HIT-T15 cells chronically cultured under supraphysiologic glucose concentrations. The reduction in STF-1 expression in these cells could be accounted for by a change in the rate of STF-1 gene transcription, suggesting a posttranscriptional control mechanism. In support of this hypothesis, no STF-1 mRNA accumulated in HIT-T15 cells passaged in 11.1 mM glucose. The only RNA species detected was a 6.4-kb STF-1 RNA species that hybridized with 5' and 3' STF-1-specific cDNA probes. We suggest that the 6.4-kb RNA represents an STF-1 mRNA precursor and that splicing of this RNA is defective in these cells. Overall, this study suggests that reduced expression of a key transcriptional regulatory factor, STF-1, contributes to the decrease in insulin gene transcription in HIT-T15 cells chronically cultured in supraphysiologic glucose concentration.