78 resultados para Single-molecule detection
Resumo:
Secretion of inflammatory mediators by rat mast cells (line RBL-2H3) was earlier shown to be inhibited upon clustering a membrane glycoprotein by monoclonal antibody G63. This glycoprotein, named mast cell function-associated antigen (MAFA), was also shown to interfere with the coupling cascade of the type 1 Fc epsilon receptor upstream to phospholipase C gamma 1 activation by protein-tyrosine kinases. Here we report that the MAFA is expressed as both a monomer and a homodimer. Expression cloning of its cDNA shows that it contains a single open reading frame, encoding a 188-amino acid-long type II integral membrane protein. The 114 C-terminal amino acids display sequence homology with the carbohydrate-binding domain of calcium-dependent animal lectins, many of which have immunological functions. The cytoplasmic tail of MAFA contains a YXXL (YSTL) motif, which is conserved among related C-type lectins and is an essential element in the immunoreceptor tyrosine-based activation motifs. Finally, changes in the MAFA tyrosyl- and seryl-phosphorylation levels are observed in response to monoclonal antibody G63 binding, antigenic stimulation, and a combination of both treatments.
Resumo:
The challenge of the Human Genome Project is to increase the rate of DNA sequence acquisition by two orders of magnitude to complete sequencing of the human genome by the year 2000. The present work describes a rapid detection method using a two-dimensional optical wave guide that allows measurement of real-time binding or melting of a light-scattering label on a DNA array. A particulate label on the target DNA acts as a light-scattering source when illuminated by the evanescent wave of the wave guide and only the label bound to the surface generates a signal. Imaging/visual examination of the scattered light permits interrogation of the entire array simultaneously. Hybridization specificity is equivalent to that obtained with a conventional system using autoradiography. Wave guide melting curves are consistent with those obtained in the liquid phase and single-base discrimination is facile. Dilution experiments showed an apparent lower limit of detection at 0.4 nM oligonucleotide. This performance is comparable to the best currently known fluorescence-based systems. In addition, wave guide detection allows manipulation of hybridization stringency during detection and thereby reduces DNA chip complexity. It is anticipated that this methodology will provide a powerful tool for diagnostic applications that require rapid cost-effective detection of variations from known sequences.
Resumo:
Mitral/tufted cells (M/T cells) and granule cells form reciprocal dendrodendritic synapses in the main olfactory bulb; the granule cell is excited by glutamate from the M/T cell and in turn inhibits M/T cells by gamma-aminobutyrate. The trans-synaptically excited granule cell is thought to induce lateral inhibition in neighboring M/T cells and to refine olfactory information. It remains, however, elusive how significantly and specifically this synaptic regulation contributes to the discrimination of different olfactory stimuli. This investigation concerns the mechanism of olfactory discrimination by single unit recordings of responses to a series of normal aliphatic aldehydes from individual rabbit M/T cells. This analysis revealed that inhibitory responses are evoked in a M/T cell by a defined subset of odor molecules with structures closely related to the excitatory odor molecules. Furthermore, blockade of the reciprocal synaptic transmission by the glutamate receptor antagonist or the gamma-aminobutyrate receptor antagonist markedly suppressed the odor-evoked inhibition, indicating that the inhibitory responses are evoked by lateral inhibition via the reciprocal synaptic transmission. The synaptic regulation in the olfactory bulb thus greatly enhances the tuning specificity of odor responses and would contribute to discrimination of olfactory information.