90 resultados para STRAND BREAKS
Resumo:
The Saccharomyces cerevisiae RAD52 gene plays a pivotal role in genetic recombination. Here we demonstrate that yeast Rad52 is a DNA binding protein. To show that the interaction between Rad52 and DNA is direct and not mediated by other yeast proteins and to facilitate protein purification, a recombinant expression system was developed. The recombinant protein can bind both single- and double-stranded DNA and the addition of either Mg2+ or ATP does not enhance the binding of single-stranded DNA. Furthermore, a DNA binding domain was found in the evolutionary conserved N terminus of the protein. More importantly, we show that the protein stimulates DNA annealing even in the presence of a large excess of nonhomologous DNA. Rad52-promoted annealing follows second-order kinetics and the rate is 3500-fold faster than that of the spontaneous reaction. How this annealing activity relates to the genetic phenotype associated with rad52 mutant cells is discussed.
Resumo:
Initiation of minus (-) strand DNA synthesis was examined on templates containing R, U5, and primer-binding site regions of the human immunodeficiency virus type 1 (HIV-1), feline immunodeficiency virus (FIV), and equine infectious anemia virus (EIAV) genomic RNA. DNA synthesis was initiated from (i) an oligoribonucleotide complementary to the primer-binding sites, (ii) synthetic tRNA(3Lys), and (iii) natural tRNA(3Lys), by the reverse transcriptases of HIV-1, FIV, EIAV, simian immunodeficiency virus, HIV type 2 (HIV-2), Moloney murine leukemia virus, and avian myeloblastosis virus. All enzymes used an oligonucleotide on wild-type HIV-1 RNA, whereas only a limited number initiated (-) strand DNA synthesis from either tRNA(3Lys). In contrast, all enzymes supported efficient tRNA(3Lys)-primed (-) strand DNA synthesis on the genomes of FIV and EIAV. This may be in part attributable to the observation that the U5-inverted repeat stem-loop of the EIAV and FIV genomes lacks an A-rich loop shown with HIV-1 to interact with the U-rich tRNA anticodon loop. Deletion of this loop in HIV-1 RNA, or disrupting a critical loop-loop complex by tRNA(3Lys) extended by 9 nt, restored synthesis of HIV-1 (-) strand DNA from primer tRNA(3Lys) by all enzymes. Thus, divergent evolution of lentiviruses may have resulted in different mechanisms to use the same host tRNA for initiation of reverse transcription.
Resumo:
The x-ray sensitive hamster cell line xrs-6 is deficient in DNA double-strand break (DSB) repair and exhibits impaired V(D)J recombination. The molecular defect in this line is in the 80-kDa subunit of the Ku autoantigen, a protein that binds to DNA ends and recruits the DNA-dependent protein kinase to DNA. Using an I-SceI endonuclease expression system, chromosomal DSB repair was examined in xrs-6 and parental CHO-K1 cell lines. A DSB in chromosomal DNA increased the yield of recombinants several thousand-fold above background in both the xrs-6 and CHO-K1 cells, with recombinational repair of DSBs occurring in as many as 1 of 100 cells electroporated with the endonuclease expression vector. Thus, recombinational repair of chromosomal DSBs can occur at substantial levels in mammalian cells and it is not grossly affected in our assay by a deficiency of the Ku autoantigen. Rejoining of broken chromosome ends (end-joining) near the site of the DSB was also examined. In contrast to recombinational repair, end-joining was found to be severely impaired in the xrs-6 cells. Thus, the Ku protein appears to play a critical role in only one of the chromosomal DSB repair pathways.
Resumo:
The effect of histone H1 binding on the cleavage of superhelical plasmids by single-strand-specific nucleases was investigated. Mapping of P1 cleavage sites in pBR322, achieved by EcoRI digestion after the original P1 attack, showed an intriguing phenomenon: preexisting susceptible sites became "protected," whereas some new sites appeared at high levels of H1. Similar results were obtained with another single-strand-specific nuclease, S1. Disappearance of cutting at preexisting sites and appearance of new sites was also observed in a derivative plasmid that contains a 36-bp stretch of alternating d(AT) sequence that is known to adopt an altered P1-sensitive conformation. On the other hand, H1 titration of a dimerized version of the d(AT)18-containing plasmid led to protection of all preexisting sites except the d(AT)18 inserts, which were still cut even at high H1 levels; in this plasmid no new sites appeared. The protection of preexisting sites is best explained by long-range effects of histone H1 binding on the superhelical torsion of the plasmid. The appearance of new sites, on the other hand, probably also involves a local effect of stabilization of specific sequences in Pl-sensitive conformation, due to direct H1 binding to such sequences. That such binding involves linker histone N- and/or C-terminal tails is indicated by the fact that titration with the globular domain of H5, while causing disappearance of preexisting sites, does not lead to the appearance of any new sites.
Resumo:
In wild-type diploid cells of Saccharomyces cerevisiae, an HO endonuclease-induced double-strand break (DSB) at the MAT locus can be efficiently repaired by gene conversion using the homologous chromosome sequences. Repair of the broken chromosome was nearly eliminated in rad52delta diploids; 99% lost the broken chromosome. However, in rad51delta diploids, the broken chromosomes were repaired approximately 35% of the time. None of these repair events were simple gene conversions or gene conversions with an associated crossover, instead, they created diploids homozygous for the MAT locus and all markers in the 100-kb region distal to the site of the DSB. In rad51delta diploids, the broken chromosome can apparently be inherited for several generations, as many of these repair events are found as sectored colonies, with one part being repaired and the other part being lost the broken chromosome. Similar events occur in about 2% of wild-type cells. We propose that a broken chromosome end can invade a homologous template in the absence of RAD51 and initiate DNA replication that may extend to the telomere, 100 or more kb away. Such break-induced replication appears to be similar to recombination-initiated replication in bacteria.
Resumo:
The neurodegeneration and amyloid deposition of sporadic Alzheimer disease (AD) also occur in familial AD and in all trisomy-21 Down syndrome (DS) patients, suggesting a common pathogenetic mechanism. We investigated whether defective processing of damaged DNA might be that mechanism, as postulated for the neurodegeneration in xeroderma pigmentosum, a disease with defective repair not only of UV radiation-induced, but also of some oxygen free radical-induced, DNA lesions. We irradiated AD and DS skin fibroblasts or blood lymphocytes with fluorescent light, which is known to cause free radical-induced DNA damage. The cells were then treated with either beta-cytosine arabinoside (araC) or caffeine, and chromatid breaks were quantified. At least 28 of 31 normal donors and 10 of 11 donors with nonamyloid neurodegenerations gave normal test results. All 12 DS, 11 sporadic AD, and 16 familial AD patients tested had abnormal araC and caffeine tests, as did XP-A cells. In one of our four AD families, an abnormal caffeine test was found in all 10 afflicted individuals (including 3 asymptomatic when their skin biopsies were obtained) and in 8 of 11 offspring at a 50% risk for AD. Our tests could prove useful in predicting inheritance of familial AD and in supporting, or rendering unlikely, the diagnosis of sporadic AD in patients suspected of having the disease.
Resumo:
In somatic mammalian cells, homologous recombination is a rare event. To study the effects of chromosomal breaks on frequency of homologous recombination, site-specific endonucleases were introduced into human cells by electroporation. Cell lines with a partial duplication within the HPRT (hypoxanthine phosphoribosyltransferase) gene were created through gene targeting. Homologous intrachromosomal recombination between the repeated regions of the gene can reconstruct a functioning, wild-type gene. Treatment of these cells with the restriction endonuclease Xba I, which has a recognition site within the repeated region of HPRT homology, increased the frequency or homologous recombination bv more than 10-fold. Recombination frequency was similarly increased by treatment with the rare-cutting yeast endonuclease PI-Sce I when a cleavage site was placed within the repeated region of HPRT. In contrast, four restriction enzymes that cut at positions either outside of the repeated regions or between them produced no change in recombination frequency. The results suggest that homologous recombination between intrachromosomal repeats can be specifically initiated by a double-strand break occurring within regions of homology, consistent with the predictions of a model.
Resumo:
Psoralen-conjugated triple-helix-forming oligonucleotides have been used to generate site-specific mutations within mammalian cells. To investigate factors influencing the efficiency of oligonucleotide-mediated gene targeting, the processing of third-strand-directed psoralen adducts was compared in normal and repair-deficient human cells. An unusually high mutation frequency and an altered mutation pattern were seen in xeroderma pigmentosum variant (XPV) cells compared with normal, xeroderma pigmentosum group A (XPA), and Fanconi anemia cells. In XPV, targeted mutations were produced in the supF reporter gene carried in a simian virus 40 vector at a frequency of 30%, 3-fold above that in normal or Fanconi anemia cells and 6-fold above that in XPA. The mutations generated by targeted psoralen crosslinks and monoadducts in the XPV cells formed a pattern distinct from that in the other three cell lines, with mutations occurring not just at the damaged site but also at adjacent base pairs. Hence, the XPV cells may have an abnormality in trans-lesion bypass synthesis during repair and/or replication, implicating a DNA polymerase or an accessory factor as a basis of the defect in XPV. These results may help to elucidate the repair deficiency in XPV, and they raise the possibility that genetic manipulation via triplex-targeted mutagenesis may be enhanced by modulation of the XPV-associated activity in normal cells.
Resumo:
RNA synthesis by the paramyxovirus respiratory syncytial virus, a ubiquitous human pathogen, was found to be more complex than previously appreciated for the nonsegmented negative-strand RNA viruses. Intracellular RNA replication of a plasmid-encoded "minigenome" analog of viral genomic RNA was directed by coexpression of the N, P, and L proteins. But, under these conditions, the greater part of mRNA synthesis terminated prematurely. This difference in processivity between the replicase and the transcriptase was unanticipated because the two enzymes ostensively shared the same protein subunits and template. Coexpression of the M2 gene at a low level of input plasmid resulted in the efficient production of full-length mRNA and, in the case of a dicistronic minigenome, sequential transcription. At a higher level, coexpression of the M2 gene inhibited transcription and RNA replication. The M2 mRNA contains two overlapping translational open reading frames (ORFs), which were segregated for further analysis. Expression of the upstream ORF1, which encoded the previously described 22-kDa M2 protein, was associated with transcription elongation. A model involving this protein in the balance between transcription and replication is proposed. ORF2, which lacks an assigned protein, was associated with inhibition of RNA synthesis. We propose that this activity renders nucleocapsids synthetically quiescent prior to incorporation into virions.
Resumo:
We have constructed simian virus 40 minireplicons containing uniquely placed cis,syn-thymine dimers (T <> T) for the analysis of leading- and lagging-strand bypass replication. Assaying for replication in a human cell-free extract through the analysis of full-size labeled product molecules and restriction fragments spanning the T <> T site resulted in the following findings: (i) The primary site of synthesis blockage with T <> T in either the leading or lagging strand was one nucleotide before the lesion. (ii) Replicative bypass of T <> T was detected in both leading and lagging strands. The efficiency of synthesis past T <> T was 22% for leading-strand T <> T and 13% for lagging-strand T <> T. (iii) The lagging-strand T <> T resulted in blocked retrograde synthesis with the replication fork proceeding past the lesion, resulting in daughter molecules containing small gaps (form II' DNA). (iv) With T <> T in the leading-strand template, both the leading and lagging strands were blocked, representing a stalled replication fork. Uncoupling of the concerted synthesis of the two strands of the replication fork was observed, resulting in preferential elongation of the undamaged lagging strand. These data support a model of selective reinitiation downstream from the lesion on lagging strands due to Okazaki synthesis, with no reinitiation close to the damage site on leading strands [Meneghini, R. & Hanawalt, P.C. (1976) Biochim. Biophys. Acta 425, 428-437].
Resumo:
Arabidopsis thaliana mutants originally isolated as hypersensitive to irradiation were screened for the ability to be transformed by Agrobacterium transferred DNA (T-DNA). One of four UV-hypersensitive mutants and one of two gamma-hypersensitive mutants tested showed a significant reduction in the frequency of stable transformants compared with radioresistant controls. In a transient assay for T-DNA transfer independent of genomic integration, both mutant lines took up and expressed T-DNA as efficiently as parental lines. These lines are therefore deficient specifically in stable T-DNA integration and thus provide direct evidence for the role of a plant function in that process. As radiation hypersensitivity suggests a deficiency in repair of DNA damage, that plant function may be one that is also involved in DNA repair, possibly, from other evidence, in repair of double-strand DNA breaks.
Resumo:
During Tn10 transposition, the element is excised from the donor site by double-strand cleavages at the two transposon ends. Double-strand cleavage is a central step in the nonreplicative transposition reaction of many transposons in both prokaryotes and eukaryotes. Evidence is presented to show that the Tn10 double-strand cut is made by an ordered, sequential cleavage of the two strands. The transferred strand is cut first, and then the nontransferred strand is cleaved. The single-strand nicked intermediate is seen to accumulate when Mn2+ is substituted for Mg2+ in the reaction or when certain mutant transposases are used. The fact that the transferred strand is cleaved before the non-transferred strand implies that the order of strand cleavages is not the determining factor that precludes a replicative mechanism of transposition.
Resumo:
B-lymphocyte-specific class switch recombination is known to occur between pairs of 2- to 10-kb switch regions located immediately upstream of the immunoglobulin constant heavy-chain genes. Others have shown that the recombination is temporally correlated with the induction of transcription at the targeted switch regions. To determine whether this temporal correlation is due to a mechanistic linkage, we have developed an extrachromosomal recombination assay that closely recapitulates DNA deletional class switch recombination. In this assay, the rate of recombination is measured between 24 and 48 hr posttransfection. We find that recombinants are generated in a switch sequence-dependent manner. Recombination occurs with a predominance within B-cell lines representative of the mature B-cell stage and within a subset of pre-B-cell lines. Transcription stimulates the switch sequence-dependent recombination. Importantly, transcription activates recombination only when directed in the physiologic orientation but has no effect when directed in the nonphysiologic orientation.
Resumo:
The DNA-dependent protein kinase (DNA-PK) consists of three polypeptide components: Ku-70, Ku-80, and an approximately 350-kDa catalytic subunit (p350). The gene encoding the Ku-80 subunit is identical to the x-ray-sensitive group 5 complementing gene XRCC5. Expression of the Ku-80 cDNA rescues both DNA double-strand break (DSB) repair and V(D)J recombination in group 5 mutant cells. The involvement of Ku-80 in these processes suggests that the underlying defect in these mutant cells may be disruption of the DNA-PK holoenzyme. In this report we show that the p350 kinase subunit is deleted in cells derived from the severe combined immunodeficiency mouse and in the Chinese hamster ovary cell line V-3, both of which are defective in DSB repair and V(D)J recombination. A centromeric fragment of human chromosome 8 that complements the scid defect also restores p350 protein expression and rescues in vitro DNA-PK activity. These data suggest the scid gene may encode the p350 protein or regulate its expression and are consistent with a model whereby DNA-PK is a critical component of the DSB-repair pathway.
Resumo:
DNA-strand exchange promoted by Escherichia coli RecA protein normally requires the presence of ATP and is accompanied by ATP hydrolysis, thereby implying a need for ATP hydrolysis. Previously, ATP hydrolysis was shown not to be required; here we demonstrate furthermore that a nucleoside triphosphate cofactor is not required for DNA-strand exchange. A gratuitous allosteric effector consisting of the noncovalent complex of ADP and aluminum fluoride, ADP.AIF4-, can both induce the high-affinity DNA-binding state of RecA protein and support the homologous pairing and exchange of up to 800-900 bp of DNA. These results demonstrate that induction of the functionally active, high-affinity DNA-binding state of RecA protein is needed for RecA protein-promoted DNA-strand exchange and that there is no requirement for a high-energy nucleotide cofactor for the exchange of DNA strands. Consequently, the free energy needed to activate the DNA substrates for DNA-strand exchange is not derived from ATP hydrolysis. Instead, the needed free energy is derived from ligand binding and is transduced to the DNA via the associated ligand-induced structural transitions of the RecA protein-DNA complex; ATP hydrolysis simply destroys the effector ligand. This concept has general applicability to the mechanism of energy transduction by proteins.