100 resultados para Recombination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conditional gene expression and gene deletion are important experimental approaches for examining the functions of particular gene products in development and disease. The cre-loxP system from bacteriophage P1 has been used in transgenic animals to induce site-specific DNA recombination leading to gene activation or deletion. To regulate the recombination in a spatiotemporally controlled manner, we constructed a recombinant adenoviral vector, Adv/cre, that contained the cre recombinase gene under regulation of the herpes simplex virus thymidine kinase promoter. The efficacy and target specificity of this vector in mediating loxP-dependent recombination were analyzed in mice that had been genetically engineered to contain loxP sites in their genome. After intravenous injection of the Adv/cre vector into adult animals, the liver and spleen showed the highest infectivity of the adenovirus as well as the highest levels of recombination, whereas other tissues such as kidney, lung, and heart had lower levels of infection and recombination. Only trace levels of recombination were detected in the brain. However, when the Adv/cre vector was injected directly into specific regions of the adult brain, including the cerebral cortex, hippocampus, and cerebellum, recombination was detectable at the injection site. Furthermore, when the Adv/cre vector was injected into the forebrains of neonatal mice, the rearranged toxP locus from recombination could be detected in the injected regions for at least 8 weeks. Taken together, these results demonstrate that the Adv/cre vector expressing a functional cre protein is capable of mediating loxP-dependent recombination in various tissues and the recombined gene locus may in some cases be maintained for an extended period. The use of the adenovirus vector expressing cre combined with localized delivery to specific tissues may provide an efficient means to achieve conditional gene expression or knockout with precise spatiotemporal control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rfp-Y is a second region in the genome of the chicken containing major histocompatibility complex (MHC) class I and II genes. Haplotypes of Rfp-Y assort independently from haplotypes of the B system, a region known to function as a MHC and to be located on chromosome 16 (a microchromosome) with the single nucleolar organizer region (NOR) in the chicken genome. Linkage mapping with reference populations failed to reveal the location of Rfp-Y, leaving Rfp-Y unlinked in a map containing >400 markers. A possible location of Rfp-Y became apparent in studies of chickens trisomic for chromosome 16 when it was noted that the intensity of restriction fragments associated with Rfp-Y increased with increasing copy number of chromosome 16. Further evidence that Rfp-Y might be located on chromosome 16 was obtained when individuals trisomic for chromosome 16 were found to transmit three Rfp-Y haplotypes. Finally, mapping of cosmid cluster III of the molecular map of chicken MHC genes (containing a MHC class II gene and two rRNA genes) to Rfp-Y validated the assignment of Rfp-Y to the MHC/NOR microchromosome. A genetic map can now be drawn for a portion of chicken chromosome 16 with Rfp-Y, encompassing two MHC class I and three MHC class II genes, separated from the B system by a region containing the NOR and exhibiting highly frequent recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In somatic mammalian cells, homologous recombination is a rare event. To study the effects of chromosomal breaks on frequency of homologous recombination, site-specific endonucleases were introduced into human cells by electroporation. Cell lines with a partial duplication within the HPRT (hypoxanthine phosphoribosyltransferase) gene were created through gene targeting. Homologous intrachromosomal recombination between the repeated regions of the gene can reconstruct a functioning, wild-type gene. Treatment of these cells with the restriction endonuclease Xba I, which has a recognition site within the repeated region of HPRT homology, increased the frequency or homologous recombination bv more than 10-fold. Recombination frequency was similarly increased by treatment with the rare-cutting yeast endonuclease PI-Sce I when a cleavage site was placed within the repeated region of HPRT. In contrast, four restriction enzymes that cut at positions either outside of the repeated regions or between them produced no change in recombination frequency. The results suggest that homologous recombination between intrachromosomal repeats can be specifically initiated by a double-strand break occurring within regions of homology, consistent with the predictions of a model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hsubc9, a human gene encoding a ubiquitin-conjugating enzyme, has been cloned. The 18-kDa HsUbc9 protein is homologous to the ubiquitin-conjugating enzymes Hus5 of Schizosaccharomyces pombe and Ubc9 of Saccharomyces cerevisiae. The Hsubc9 gene complements a ubc9 mutation of S. cerevisiae. It has been mapped to chromosome 16p13.3 and is expressed in many human tissues, with the highest levels in testis and thymus. According to the Ga14 two-hybrid system analysis, HsUbc9 protein interacts with human recombination protein Rad51. A mouse homolog, Mmubc9, encodes an amino acid sequence that is identical to the human protein. In mouse spermatocytes, MmUbc9 protein, like Rad51 protein, localizes in synaptonemal complexes, which suggests that Ubc9 protein plays a regulatory role in meiosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of RecA-like proteins have been found in eukaryotic organisms. We demonstrate that the prokaryotic recombination protein RecA itself is capable of interacting with genomic homologous DNA in somatic plant cells. Resistance to the DNA crosslinking agent mitomycin C requires homologous recombination as well as excision repair activity. Tobacco protoplasts expressing a nucleus-targeted RecA protein were at least three times as efficient as wild-type cells in repairing mitomycin C-induced damage. Moreover, homologous recombination at a defined locus carrying an endogenous nuclear marker gene was stimulated at least 10-fold in transgenic plant cells expressing nucleus-targeted RecA. The increase in resistance to mitomycin C and the stimulation of intrachromosomal recombination demonstrate that Escherichia coli RecA protein is functional in genomic homologous recombination in plants, especially when targeted to the plant nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RAG1 protein is essential for the activation of V(D)J recombination in developing lymphocytes (V, variable; D, diversity; J, joining). However, it has not been determined whether its role involves substrate recognition and catalysis. A single amino acid substitution mutation in the RAG1 gene has now been identified that renders its activity sensitive to the sequence of the coding region abutting the heptamer site in the recombination signal sequence. These results strongly imply that RAG1 interacts directly with DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombination repair protein 1 (Rrp1) includes a C-terminal region homologous to several DNA repair proteins, including Escherichia coli exonuclease III and human APE, that repair oxidative and alkylation damage to DNA. The nuclease activities of Rrp1 include apurinic/apyrimidinic endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-exonuclease. As shown previously, the C-terminal nuclease region of Rrp1 is sufficient to repair oxidative- and alkylation-induced DNA damage in repair-deficient E. coli mutants. DNA strand-transfer and single-stranded DNA renaturation activities are associated with the unique N-terminal region of Rrp1, which suggests possible additional functions that include recombinational repair or homologous recombination. By using the Drosophila w/w+ mosaic eye system, which detects loss of heterozygosity as changes in eye pigmentation, somatic mutation and recombination frequencies were determined in transgenic flies overexpressing wild-type Rrp1 protein from a heat-shock-inducible transgene. A large decrease in mosaic clone frequency is observed when Rrp1 overexpression precedes treatment with gamma-rays, bleomycin, or paraquat. In contrast, Rrp1 overexpression does not alter the spot frequency after treatment with the alkylating agents methyl methanesulfonate or methyl nitrosourea. A reduction in mosaic clone frequency depends on the expression of the Rrp1 transgene and on the nature of the induced DNA damage. These data suggest a lesion-specific involvement of Rrp1 in the repair of oxidative DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA molecules undergoing transformation into yeast are highly recombinogenic, even when diverged. We reasoned that transformation-associated recombination (TAR) could be employed to clone large DNAs containing repeat sequences, thereby eliminating the need for in vitro enzymatic reactions such as restriction and ligation and reducing the amount of DNA handling. Gently isolated human DNA was transformed directly into yeast spheroplasts along with two genetically marked (M1 and M2) linearized vectors that contained a human Alu sequence at one end and a telomere sequence at the other end (Alu-CEN-M1-TEL and Alu-M2-TEL). Nearly all the M1-selected transformants had yeast artificial chromosomes (YACs) containing human DNA inserts that varied in size from 70 kb to > 600 kb. Approximately half of these had also acquired the unselected M2 marker. The mitotic segregational stability of YACs generated from one (M1) or two (M1 and M2) vector(s) was comparable, suggesting de novo generation of telomeric ends. Since no YACs were isolated when rodent DNAs or a vector lacking an Alu sequence was used, the YACs were most likely the consequence of TAR between the repeat elements on the vector(s) and the human DNA. Using the BLUR13 Alu-containing vector, we demonstrated that human DNA could be efficiently cloned from mouse cells that contained a single human chromosome 16. The distribution of cloned DNAs on chromosome 16 was determined by fluorescence in situ hybridization. We propose that TAR cloning can provide an efficient means for generating YACs from specific chromosomes and subchromosome fragments and that TAR cloning may be useful for isolating families of genes and specific genes from total genome DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UDP-N-acetylgalactosamine (GalNAc): polypeptide N-acetylgalactosaminyltransferase (polypeptide GalNAc-T) catalyzes transfer of the monosaccharide GalNAc to serine and threonine residues, thereby initiating O-linked oligosaccharide biosynthesis. Previous studies have suggested the possibility of multiple polypeptide GalNAc-Ts, although attachment of saccharide units to polypeptide or lipid in generating oligosaccharide structures in vertebrates has been dependent upon the activity of single gene products. To address this issue and to determine the relevance of Oglycosylation variation in T-cell ontogeny, we have directed Cre/loxP mutagenic recombination to the polypeptide GalNAc-T locus in gene-targeted mice. Resulting deletion in the catalytic region of polypeptide GalNAc-T occurred to completion on both alleles in thymocytes and was found in peripheral T cells, but not among other cell types. Thymocyte O-linked oligosaccharide formation persisted in the absence of a functional targeted polypeptide GalNAc-T allele as determined by O-glycan-specific lectin binding. T-cell development and colonization of secondary lymphoid organs were also normal. These results indicate a complexity in vertebrate O-glycan biosynthesis that involves multiple polypeptide GalNAc-Ts. We infer the potential for protein-specific O-glycan formation governed by distinct polypeptide GalNAc-Ts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

V(D)J rearrangement is the molecular mechanism by which an almost infinite array of specific immune receptors are generated. Defects in this process result in profound immunodeficiency as is the case in the C.B-17 SCID mouse or in RAG-1 (recombination-activating gene 1) or RAG-2 deficient mice. It has recently become clear that the V(D)J recombinase most likely consists of both lymphoid-specific factors and ubiquitously expressed components of the DNA double-strand break repair pathway. The deficit in SCID mice is in a factor that is required for both of these pathways. In this report, we show that the factor defective in the autosomal recessive severe combined immunodeficiency of Arabian foals is required for (i) V(D)J recombination, (ii) resistance to ionizing radiation, and (iii) DNA-dependent protein kinase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In prokaryotic and eukaryotic organisms, the electrophoretic variation in housekeeping enzymes from natural populations is assumed to have arisen by the accumulation of stochastic predominantly neutral mutations. In the naturally transformable bacterium Neisseria meningitidis, we show that variation in the electrophoretic mobility of adenylate kinase is due to inter- and intraspecies recombination rather than mutation. The nucleotide sequences of the adenylate kinase gene (adk) from isolates that express the predominant slow electrophoretic variant were rather uniform, differing in sequence at an average of 1.1% of nucleotide sites. The adk sequences of rare isolates expressing the fast migrating variant were identical to each other but had a striking mosaic structure when compared to the adk genes from strains expressing the predominant variant. Thus the sequence from the fast variants was identical to those of typical slow variants in the first 158 bp of the gene but differed by 8.4% in the rest of the gene (nt 159-636). The fast electrophoretic variant appears to have arisen by the replacement of most of the meningococcal gene with the corresponding region from the adk gene of a closely related Neisseria species. The adk genes expressing the electrophoretic variant with intermediate mobility were perfect, or almost perfect, recombinants between the adk genes expressing the fast and slow variants. Recombination may, therefore, play a major role in the generation of electrophoretically detectable variation in housekeeping enzymes of some bacterial species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We earlier described three lines of sex-reversed XY female mice deleted for sequences believed close to the testes-determining gene (Sry) on the Y chromosome short arm (Yp). The original sex-reversed females appeared among the offspring of XY males that carried the Yp duplication Sxr on their X chromosome. Earlier cytogenetic observations had suggested that the deletions resulted from asymmetrical meiotic recombination between the Y and the homologous Sxr region, but no direct evidence for this hypothesis was available. We have now analyzed the offspring of XSxr/Y males carrying an evolutionarily divergent Mus musculus domesticus Y chromosome, which permits detection and characterization of such recombination events. This analysis has enabled the derivation of a recombination map of Yp and Sxr, also demonstrating the orientation of Yp with respect to the Y centromere. The mapping data have established that Rbm, the murine homologue of a gene family cloned from the human Y chromosome, lies between Sry and the centromere. Analysis of two additional XY female lines shows that asymmetrical Yp-Sxr recombination leading to XY female sex reversal results in deletion of Rbm sequences. The deletions bring Sry closer to Y centromere, consistent with the hypothesis that position-effect inactivation of Sry is the basis for the sex reversal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of the Hex generalized mismatch repair system to prevent recombination between partially divergent (also called homeologous) sequences during transformation in Streptococcus pneumoniae was investigated. By using as donor in transformation cloned fragments 1.7-17.5% divergent in DNA sequence from the recipient, it was observed that the Hex system prevents chromosomal integration of the least and the most divergent fragments but frequently fails to do so for other fragments. In the latter case, the Hex system becomes saturated (inhibited) due to an excess of mismatches: it is unable to repair a single mismatch located elsewhere on the chromosome. Further investigation with chromosomal donor DNA, carrying only one genetically marked divergent region, revealed that a single divergent fragment can lead to saturation of the Hex system. Increase in cellular concentration of either HexA, the MutS homologue that binds mismatches, or HexB, the MutL homologue for which the essential role in repair as yet remains obscure, was shown to restore repair ability in previously saturating conditions. Investigation of heterospecific transformation by chromosomal DNA from two related streptococcal species, Streptococcus oralis and Streptococcus mitis, also revealed complete saturation of the Hex system. Therefore the Hex system is not a barrier to interspecies recombination in S. pneumoniae. These results are discussed in light of those described for the Mut system of Escherichia coli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During meiosis, crossovers occur at a high level, but the level of noncrossover recombinants is even higher. The biological rationale for the existence of the latter events is not known. It has been suggested that a noncrossover-specific pathway exists specifically to mediate chromosome pairing. Using a physical assay that monitors both crossovers and noncrossovers in cultures of yeast undergoing synchronous meiosis, we find that both types of products appear at essentially the same time, after chromosomes are fully synapsed at pachytene. We have also analyzed a situation in which commitment to meiotic recombination and formation of the synaptonemal complex are coordinately suppressed (mer1 versus mer1 MER2++). We find that suppression is due primarily to restoration of meiosis-specific double-strand breaks, a characteristic of the major meiotic recombination pathway. Taken together, the observations presented suggest that there probably is no noncrossover-specific pathway and that restoration of intermediate events in a single pairing/recombination pathway promotes synaptonemal complex formation. The biological significant of noncrossover recombination remains to be determined, however.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The T-cell receptor (TCR) beta chain is instrumental in the progression of thymocyte differentiation from the CD4-CD8- to the CD4+CD8+ stage. This differentiation step may involve cell surface expression of novel CD3-TCR complexes. To facilitate biochemical characterization of these complexes, we established cell lines from thymic lymphomas originating from mice carrying a mutation in the p53 gene on the one hand and a mutation in TCR-alpha, TCR-beta, or the recombination activating gene 1 (RAG-1) on the other hand. The cell lines were CD4+CD8+ and appeared to be monoclonal. A cell line derived from a RAG-1 x p53 double mutant thymic lymphoma expressed low levels of CD3-epsilon, -gamma, and -delta on the surface. TCR-alpha x p53 double mutant cell lines were found to express complexes consisting of TCR-beta chains associated with CD3-epsilon, -gamma, and -delta chains and CD3-zeta zeta dimers. These lines will be useful tools to study the molecular structure and signal transducing properties of partial CD3-TCR complexes expressed on the surface of immature thymocytes.