213 resultados para RNA-POLYMERASE HOLOENZYME


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GreA and GreB transcript cleavage factors of Escherichia coli suppress elongation arrest and may have a proofreading role in transcription. With the use of E. coli greA-greB- mutant, RNA polymerase is demonstrated to possess substantial intrinsic transcript cleavage activity. Mildly alkaline pH mimics the effect of the Gre proteins by inducing transcript cleavage in ternary complexes and antagonizing elongation arrest through a cleavage-and-restart reaction. Thus, transcript cleavage constitutes the second enzymological activity of RNA polymerase along with polymerization/pyrophosphorolysis of RNA, whereas the Gre proteins merely enhance this intrinsic property.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alternative bacterial σN RNA polymerase holoenzyme binds promoters as a transcriptionally inactive complex that is activated by enhancer-binding proteins. Little is known about how sigma factors respond to their ligands or how the responses lead to transcription. To examine the liganded state of σN, the assembly of end-labeled Klebsiella pneumoniae σN into holoenzyme, closed promoter complexes, and initiated transcription complexes was analyzed by enzymatic protein footprinting. V8 protease-sensitive sites in free σN were identified in the acidic region II and bordering or within the minimal DNA binding domain. Interaction with core RNA polymerase prevented cleavage at noncontiguous sites in region II and at some DNA binding domain sites, probably resulting from conformational changes. Formation of closed complexes resulted in further protections within the DNA binding domain, suggesting close contact to promoter DNA. Interestingly, residue E36 becomes sensitive to proteolysis in initiated transcription complexes, indicating a conformational change in holoenzyme during initiation. Residue E36 is located adjacent to an element involved in nucleating strand separation and in inhibiting polymerase activity in the absence of activation. The sensitivity of E36 may reflect one or both of these functions. Changing patterns of protease sensitivity strongly indicate that σN can adjust conformation upon interaction with ligands, a property likely important in the dynamics of the protein during transcription initiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The σ-N (σN) subunit of the bacterial RNA polymerase is a sequence specific DNA-binding protein. The RNA polymerase holoenzyme formed with σN binds to promoters in an inactive form and only initiates transcription when activated by enhancer-binding positive control proteins. We now provide evidence to show that the DNA-binding activity of σN involves two distinct domains: a C-terminal DNA-binding domain that directly contacts DNA and an adjacent domain that enhances DNA-binding activity. The sequences required for the enhancement of DNA binding can be separated from the sequences required for core RNA polymerase binding. These results provide strong evidence for communication between domains within a transcription factor, likely to be important for the function of σN in enhancer-dependent transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bacteriophage T4 encodes proteins that are responsible for tightly regulating mRNA synthesis throughout phage development in Escherichia coli. The three classes of T4 promoters (early, middle, and late) are utilized sequentially by the host RNA polymerase as a result of phage-induced modifications. One such modification is the tight binding of the T4 AsiA protein to the σ70 subunit of the RNA polymerase. This interaction is pivotal for the transition between T4 early and middle transcription, since it both inhibits recognition of host and T4 early promoters and stimulates T4 middle mode synthesis. The activation of T4 middle transcription also requires the T4 MotA protein, bound specifically to its recognition sequence, the “Mot box,” which is centered at position −30 of these promoters. Accordingly, the two T4 proteins working in concert are sufficient to effectively switch the transcription specificity of the RNA polymerase holoenzyme. Herein, we investigate the mechanism of transcription activation and report that, while the presence of MotA and AsiA increases the initial recruitment of RNA polymerase to a T4 middle promoter, it does not alter the intrinsic stability of the discrete complexes formed. In addition, we have characterized the RNA polymerase-promoter species by UV laser footprinting and followed their evolution from open into initiating complexes. These data, combined with in vitro transcription assays, indicate that AsiA and MotA facilitate promoter escape, thereby stimulating the production of full-length transcripts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription from the middle promoter, Pm, of phage Mu is initiated by Escherichia coli RNA polymerase holoenzyme (E sigma 70; RNAP) and the phage-encoded activator, Mor. Point mutations in the spacer region between the -10 hexamer and the Mor binding site result in changes of promoter activity in vivo. These mutations are located at the junction between a rigid T-tract and adjacent, potentially deformable G + C-rich DNA segment, suggesting that deformation of the spacer region may play a role in the transcriptional activation of Pm. This prediction was tested by using dimethyl sulfate and potassium permanganate footprinting analyses. Helical distortion involving strand separation was detected at positions -32 to -34, close to the predicted interface between Mor and RNAP. Promoter mutants in which this distortion was not detected exhibited a lack of melting in the -12 to -1 region and reduced promoter activity in vivo. We propose that complexes containing the distortion represent stressed intermediates rather than stable open complexes and thus can be envisaged as a transition state in the kinetic pathway of Pm activation in which stored torsional energy could be used to facilitate melting around the transcription start point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When in Escherichia coli the host RNA polymerase is replaced by the 8-fold faster bacteriophage T7 enzyme for transcription of the lacZ gene, the beta-galactosidase yield per transcript drops as a result of transcript destabilization. We have measured the beta-galactosidase yield per transcript from T7 RNA polymerase mutants that exhibit a reduced elongation speed in vitro. Aside from very slow mutants that were not sufficiently processive to transcribe the lacZ gene, the lower the polymerase speed, the higher the beta-galactosidase yield per transcript. In particular, a mutant which was 2.7-fold slower than the wild-type enzyme yielded 3.4- to 4.6-fold more beta-galactosidase per transcript. These differences in yield vanished in the presence of the rne-50 mutation and therefore reflect the unequal sensitivity of the transcripts to RNase E. We propose that the instability of the T7 RNA polymerase transcripts stems from the unmasking of an RNase E-sensitive site(s) between the polymerase and the leading ribosome: the faster the polymerase, the longer the lag between the synthesis of this site(s) and its shielding by ribosomes, and the lower the transcript stability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mammalian capping enzymes are bifunctional proteins with both RNA 5′-triphosphatase and guanylyltransferase activities. The N-terminal 237-aa triphosphatase domain contains (I/V)HCXXGXXR(S/T)G, a sequence corresponding to the conserved active-site motif in protein tyrosine phosphatases (PTPs). Analysis of point mutants of mouse RNA 5′-triphosphatase identified the motif Cys and Arg residues and an upstream Asp as required for activity. Like PTPs, this enzyme was inhibited by iodoacetate and VO43− and independent of Mg2+, providing additional evidence for phosphate removal from RNA 5′ ends by a PTP-like mechanism. The full-length, 597-aa mouse capping enzyme and the C-terminal guanylyltransferase fragment (residues 211–597), unlike the triphosphatase domain, bound poly (U) and were nuclear in transfected cells. RNA binding was increased by GTP, and a guanylylation-defective, active-site mutant was not affected. Ala substitution at positions required for the formation of the enzyme-GMP capping intermediate (R315, R530, K533, or N537) also eliminated poly (U) binding, while proteins with conservative substitutions at these sites retained binding but not guanylyltransferase activity. These results demonstrate that the guanylyltransferase domain of mammalian capping enzyme specifies nuclear localization and RNA binding. Association of capping enzyme with nascent transcripts may act in synergy with RNA polymerase II binding to ensure 5′ cap formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Editing of RNA changes the read-out of information from DNA by altering the nucleotide sequence of a transcript. One type of RNA editing found in all metazoans uses double-stranded RNA (dsRNA) as a substrate and results in the deamination of adenosine to give inosine, which is translated as guanosine. Editing thus allows variant proteins to be produced from a single pre-mRNA. A mechanism by which dsRNA substrates form is through pairing of intronic and exonic sequences before the removal of noncoding sequences by splicing. Here we report that the RNA editing enzyme, human dsRNA adenosine deaminase (DRADA1, or ADAR1) contains a domain (Zα) that binds specifically to the left-handed Z-DNA conformation with high affinity (KD = 4 nM). As formation of Z-DNA in vivo occurs 5′ to, or behind, a moving RNA polymerase during transcription, recognition of Z-DNA by DRADA1 provides a plausible mechanism by which DRADA1 can be targeted to a nascent RNA so that editing occurs before splicing. Analysis of sequences related to Zα has allowed identification of motifs common to this class of nucleic acid binding domain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

NtrC (nitrogen regulatory protein C) is a bacterial enhancer-binding protein of 469 residues that activates transcription by σ54-holoenzyme. A region of its transcriptional activation (central) domain that is highly conserved among homologous activators of σ54-holoenzyme—residues 206–220—is essential for interaction with this RNA polymerase: it is required for contact with the polymerase and/or for coupling the energy from ATP hydrolysis to a change in the conformation of the polymerase that allows it to form transcriptionally productive open complexes. Several mutant NtrC proteins with amino acid substitutions in this region, including NtrCA216V and NtrCG219K, have normal ATPase activity but fail in transcriptional activation. We now report that other mutant forms carrying amino acid substitutions at these same positions, NtrCA216C and NtrCG219C, are capable of activating transcription when they are not bound to a DNA template (non-DNA-binding derivatives with an altered helix–turn–helix DNA-binding motif at the C terminus of the protein) but are unable to do so when they are bound to a DNA template, whether or not it carries a specific enhancer. Enhancer DNA remains a positive allosteric effector of ATP hydrolysis, as it is for wild-type NtrC but, surprisingly, appears to have become a negative allosteric effector for some aspect of interaction with σ54-holoenzyme. The conserved region in which these amino acid substitutions occur (206–220) is equivalent to the Switch I region of a large group of purine nucleotide-binding proteins. Interesting analogies can be drawn between the Switch I region of NtrC and that of p21ras.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genes for σ-like factors of bacterial-type RNA polymerase have not been characterized from any multicellular eukaryotes, although they probably play a crucial role in the expression of plastid photosynthesis genes. We have cloned three distinct cDNAs, designated SIG1, SIG2, and SIG3, for polypeptides possessing amino acid sequences for domains conserved in σ70 factors of bacterial RNA polymerases from the higher plant Arabidopsis thaliana. Each gene is present as one copy per haploid genome without any additional sequences hybridized in the genome. Transient expression assays using green fluorescent protein demonstrated that N-terminal regions of the SIG2 and SIG3 ORFs could function as transit peptides for import into chloroplasts. Transcripts for all three SIG genes were detected in leaves but not in roots, and were induced in leaves of dark-adapted plants in rapid response to light illumination. Together with results of our previous analysis of tissue-specific regulation of transcription of plastid photosynthesis genes, these results indicate that expressed levels of the genes may influence transcription by regulating RNA polymerase activity in a green tissue-specific manner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have characterized two Saccharomyces cerevisiae proteins, Sro9p and Slf1p, which contain a highly conserved motif found in all known La proteins. Originally described as an autoantigen in patients with rheumatic disease, the La protein binds to newly synthesized RNA polymerase III transcripts. In yeast, the La protein homologue Lhp1p is required for the normal pathway of tRNA maturation and also stabilizes newly synthesized U6 RNA. We show that deletions in both SRO9 and SLF1 are not synthetically lethal with a deletion in LHP1, indicating that the three proteins do not function in a single essential process. Indirect immunofluorescence microscopy reveals that although Lhp1p is primarily localized to the nucleus, Sro9p is cytoplasmic. We demonstrate that Sro9p and Slf1p are RNA-binding proteins that associate preferentially with translating ribosomes. Consistent with a role in translation, strains lacking either Sro9p or Slf1p are less sensitive than wild-type strains to certain protein synthesis inhibitors. Thus, Sro9p and Slf1p define a new and possibly evolutionarily conserved class of La motif-containing proteins that may function in the cytoplasm to modulate mRNA translation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We provide the first report, to our knowledge, of a helper-independent system for rescuing a segmented, negative-strand RNA genome virus entirely from cloned cDNAs. Plasmids were constructed containing full-length cDNA copies of the three Bunyamwera bunyavirus RNA genome segments flanked by bacteriophage T7 promoter and hepatitis delta virus ribozyme sequences. When cells expressing both bacteriophage T7 RNA polymerase and recombinant Bunyamwera bunyavirus proteins were transfected with these plasmids, full-length antigenome RNAs were transcribed intracellularly, and these in turn were replicated and packaged into infectious bunyavirus particles. The resulting progeny virus contained specific genetic tags characteristic of the parental cDNA clones. Reassortant viruses containing two genome segments of Bunyamwera bunyavirus and one segment of Maguari bunyavirus were also produced following transfection of appropriate plasmids. This accomplishment will allow the full application of recombinant DNA technology to manipulate the bunyavirus genome.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the budding yeast, Saccharomyces cerevisiae, actively transcribed tRNA genes can negatively regulate adjacent RNA polymerase II (pol II)-transcribed promoters. This tRNA gene-mediated silencing is independent of the orientation of the tRNA gene and does not require direct, steric interference with the binding of either upstream pol II factors or the pol II holoenzyme. A mutant was isolated in which this form of silencing is suppressed. The responsible point mutation affects expression of the Cbf5 protein, a small nucleolar ribonucleoprotein protein required for correct processing of rRNA. Because some early steps in the S. cerevisiae pre-tRNA biosynthetic pathway are nucleolar, we examined whether the CBF5 mutation might affect this localization. Nucleoli were slightly fragmented, and the pre-tRNAs went from their normal, mostly nucleolar location to being dispersed in the nucleoplasm. A possible mechanism for tRNA gene-mediated silencing is suggested in which subnuclear localization of tRNA genes antagonizes transcription of nearby genes by pol II.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As an adhesion receptor, the β2 integrin lymphocyte function-associated antigen-1 (LFA-1) contributes a strong adhesive force to promote T lymphocyte recirculation and interaction with antigen-presenting cells. As a signaling molecule, LFA-1-mediates transmembrane signaling, which leads to the generation of second messengers and costimulation resulting in T cell activation. We recently have demonstrated that, in costimulatory fashion, LFA-1 activation promotes the induction of T cell membrane urokinase plasminogen activator receptor (uPAR) and that this induced uPAR is functional. To investigate the mechanism(s) of this induction, we used the RNA polymerase II inhibitor 5,6-dichloro-1-β-d-ribobenzimidazole and determined that uPAR mRNA degradation is delayed by LFA-1 activation. Cloning of the wild-type, deleted and mutated 3′-untranslated region of the uPAR cDNA into a serum-inducible rabbit β-globin cDNA reporter construct revealed that the AU-rich elements and, in particular the nonameric UUAUUUAUU sequence, are crucial cis-acting elements in uPAR mRNA degradation. Experiments in which Jurkat T cells were transfected with reporter constructs demonstrated that LFA-1 engagement was able to stabilize the unstable reporter mRNA containing the uPAR 3′-untranslated region. Our study reveals a consequence of adhesion receptor-mediated signaling in T cells, which is potentially important in the regulation of T cell activation, including production of cytokines and expression of proto-oncogenes, many of which are controlled through 3′ AU-rich elements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

M2 is a double-stranded RNA (dsRNA) element occurring in the hypovirulent isolate Rhs 1A1 of the plant pathogenic basidiomycete Rhizoctonia solani. Rhs 1A1 originated as a sector of the virulent field isolate Rhs 1AP, which contains no detectable amount of the M2 dsRNA. The complete sequence (3,570 bp) of the M2 dsRNA has been determined. A 6.9-kbp segment of total DNA from either Rhs 1A1 or Rhs 1AP hybridizes with an M2-specific cDNA probe. The sequences of M2 dsRNA and of PCR products generated from Rhs 1A1 total DNA were found to be identical. Thus this report describes a fungal host containing full-length DNA copies of a dsRNA element. A major portion of the M2 dsRNA is located in the cytoplasm, whereas a smaller amount is found in mitochondria. Based on either the universal or the mitochondrial genetic code of filamentous fungi, one strand of M2 encodes a putative protein of 754 amino acids. The resulting polypeptide has all four motifs of a dsRNA viral RNA-dependent RNA polymerase (RDRP) and is phylogenetically related to the RDRP of a mitochondrial dsRNA associated with hypovirulence in strain NB631 of Cryphonectria parasitica, incitant of chestnut blight. This polypeptide also has significant sequence similarity with two domains of a pentafunctional polypeptide, which catalyzes the five central steps of the shikimate pathway in yeast and filamentous fungi.