110 resultados para REPRESSOR
Resumo:
We describe a two-hybrid strategy for detection of interactions with transactivator proteins. This repressed transactivator (RTA) system employs the N-terminal repression domain of the yeast general repressor TUP1. TUP1-GAL80 fusion proteins, when coexpressed with GAL4, are shown to inhibit transcription of GAL4-dependent reporter genes. This effect requires the C-terminal 30 residues of GAL4, which are required for interaction with GAL80 in vitro. Furthermore, repression of GAL transcription by TUP1-GAL80 requires SRB10, demonstrating that the TUP1 repression domain, in the context of a two-hybrid interaction, functions by the same mechanism as endogenous TUP1. Using this strategy, we demonstrate interactions between the mammalian basic helix–loop–helix proteins MyoD and E12, and between c-Myc and Bin-1. We have also identified interacting clones from a TUP1-cDNA fusion expression library by using GAL4-VP16 as a bait fusion. These results demonstrate that RTA is generally applicable for identifying and characterizing interactions with transactivator proteins in vivo.
Resumo:
In self-processing biochemical reactions, a protein or RNA molecule specifically modifies its own structure. Many such reactions are regulated in response to the needs of the cell by an interaction with another effector molecule. In the system we study here, specific cleavage of the Escherichia coli LexA repressor, LexA cleaves itself in vitro at a slow rate, but in vivo cleavage requires interaction with an activated form of RecA protein. RecA acts indirectly as a coprotease to stimulate LexA autodigestion. We describe here a new class of lexA mutants, lexA (Adg-; for autodigestion-defective) mutants, termed Adg- for brevity. Adg- mutants specifically interfered with the ability of LexA to autodigest but left intact its ability to undergo RecA-mediated cleavage. The data are consistent with a conformational model in which RecA favors a reactive conformation capable of undergoing cleavage. To our knowledge, this is the first example of a mutation in a regulated self-processing reaction that impairs the rate of self-processing without markedly affecting the stimulated reaction. Had wild-type lexA carried such a substitution, discovery of its self-processing would have been difficult; we suggest that, in other systems, a slow rate of self-processing has prevented recognition that a reaction is of this nature.
Resumo:
The early growth response 1 (EGR-1) gene product is a transcription factor with role in differentiation and growth. We have previously shown that expression of exogenous EGR-1 in various human tumor cells unexpectedly and markedly reduces growth and tumorigenicity and, conversely, that suppression of endogenous Egr-1 expression by antisense RNA eliminates protein expression, enhances growth, and promotes phenotypic transformation. However, the mechanism of these effects remained unknown. The promoter of human transforming growth factor beta 1 (TGF-beta 1) contains two GC-rich EGR-1 binding sites. We show that expression of EGR-1 in human HT-1080 fibrosarcoma cells uses increased secretion of biologically active TGF-beta 1 in direct proportion (rPearson = 0.96) to the amount of EGR-1 expressed and addition of recombinant human TGF-beta 1 is strongly growth-suppressive for these cells. Addition of monoclonal anti-TGF-beta 1 antibodies to EGR-1-expressing HT-1080 cells completely reverses the growth inhibitory effects of EGR-1. Reporter constructs bearing the EGR-1 binding segment of the TGF-beta 1 promoter was activated 4- to 6-fold relative to a control reporter in either HT-1080 cells that stably expressed or parental cells cotransfected with an EGR-1 expression vector. Expression of delta EGR-1, a mutant that cannot interact with the corepressors, nerve growth factor-activated factor binding proteins NAB1 and NAB2, due to deletion of the repressor domain, exhibited enhanced transactivation of 2- to 3.5-fold over that of wild-type EGR-1 showing that the reporter construct reflected the appropriate in vivo regulatory context. The EGR-1-stimulated transactivation was inhibited by expression of the Wilms tumor suppressor, a known specific DNA-binding competitor. These results indicate that EGR-1 suppresses growth of human HT-1080 fibrosarcoma cells by induction of TGF-beta 1.
Resumo:
Nocturnal melatonin production in the pineal gland is under the control of norepinephrine released from superior cervical ganglia afferents in a rhythmic manner, and of cyclic AMP. Cyclic AMP increases the expression of serotonin N-acetyltransferase and of inducible cAMP early repressor that undergo circadian oscillations crucial for the maintenance and regulation of the biological clock. In the present study, we demonstrate a circadian pattern of expression of the calcium/calmodulin activated adenylyl cyclase type 1 (AC1) mRNA in the rat pineal gland. In situ hybridization revealed that maximal AC1 mRNA expression occurred at midday (12:00-15:00), with a very low signal at night (0:00-3:00). We established that this rhythmic pattern was controlled by the noradrenergic innervation of the pineal gland and by the environmental light conditions. Finally, we observed a circadian responsiveness of the pineal AC activity to calcium/calmodulin, with a lag due to the processing of the protein. At midday, AC activity was inhibited by calcium (40%) either in the presence or absence of calmodulin, while at night the enzyme was markedly (3-fold) activated by the calcium-calmodulin complex. These findings suggest (i) the involvement of AC1 acting as the center of a gating mechanism, between cyclic AMP and calcium signals, important for the fine tuning of the pineal circadian rhythm; and (ii) a possible regulation of cyclic AMP on the expression of AC1 in the rat pineal gland.
Resumo:
The retinoid Z receptor beta (RZR beta), an orphan receptor, is a member of the retinoic acid receptor (RAR)/thyroid hormone receptor (TR) subfamily of nuclear receptors. RZR beta exhibits a highly restricted brain-specific expression pattern. So far, no natural RZR beta target gene has been identified and the physiological role of the receptor in transcriptional regulation remains to be elucidated. Electrophoretic mobility shift assays reveal binding of RZR beta to monomeric response elements containing the sequence AnnTAGGTCA, but RZR beta-mediated transactivation of reporter genes is only achieved with two property spaced binding sites. We present evidence that RZR beta can function as a cell-type-specific transactivator. In neuronal cells, GaI-RZR beta fusion proteins function as potent transcriptional activators, whereas no transactivation can be observed in nonneuronal cells. Mutational analyses demonstrate that the activation domain (AF-2) of RZR beta and RAR alpha are functionally interchangeable. However, in contrast to RAR and TR, the RZR beta AF-2 cannot function autonomously as a transactivation domain. Furthermore, our data define a novel repressor function for the C-terminal part of the putative ligand binding domain. We propose that the transcriptional activity of RZR beta is regulated by an interplay of different receptor domains with coactivators and corepressors.
Resumo:
Studies of gene regulation have revealed that several transcriptional regulators can switch between activator and repressor depending upon both the promoter and the cellular context. A relatively simple prokaryotic example is illustrated by the Escherichia coli CytR regulon. In this system, the cAMP receptor protein (CRP) assists the binding of RNA polymerase as well as a specific negative regulator, CytR. Thus, CRP functions either as an activator or as a corepressor. Here we show that, depending on promoter architecture, the CRP/CytR nucleoprotein complex has opposite effects on transcription. When acting from a site close to the DNA target for RNA polymerase, CytR interacts with CRP to repress transcription, whereas an interaction with CRP from appropriately positioned upstream binding sites can result in formation of a huge preinitiation complex and transcriptional activation. Based on recent results about CRP-mediated regulation of transcription initiation and the finding that CRP possesses discrete surface-exposed patches for protein-protein interaction with RNA polymerase and CytR, a molecular model for this dual regulation is discussed.
Resumo:
Histone H1, a major structural component of chromatin fiber, is believed to act as a general repressor of transcription. To investigate in vivo the role of this protein in transcription regulation during development of a multicellular organism, we made transgenic tobacco plants that overexpress the gene for Arabidopsis histone H1. In all plants that overexpressed H1 the total H1-to-DNA ratio in chromatin increased 2.3-2.8 times compared with the physiological level. This was accompanied by 50-100% decrease of native tobacco H1. The phenotypic changes in H1-overexpressing plants ranged from mild to severe perturbations in morphological appearance and flowering. No correlation was observed between the extent of phenotypic change and the variation in the amount of overexpressed H1 or the presence or absence of the native tobacco H1. However, the severe phenotypic changes were correlated with early occurrence during plant growth of cells with abnormally heterochromatinized nuclei. Such cells occurred considerably later in plants with milder changes. Surprisingly, the ability of cells with highly heterochromatinized nuclei to fulfill basic physiological functions, including differentiation, was not markedly hampered. The results support the suggestion that chromatin structural changes dependent on H1 stoichiometry and on the profile of major H1 variants have limited regulatory effect on the activity of genes that control basal cellular functions. However, the H1-mediated chromatin changes can be of much greater importance for the regulation of genes involved in control of specific developmental programs.
Resumo:
Cells infected with herpes simplex virus 1 (HSV-1) undergo productive or latent infection without exhibiting features characteristic of apoptosis. In this report, we show that HSV-1 induces apoptosis but has evolved a function that blocks apoptosis induced by infection as well as by other means. Specifically, (i) Vero cells infected with a HSV-1 mutant deleted in the regulatory gene alpha 4 (that encodes repressor and transactivating functions), but not those infected with wild-type HSV-1(F), exhibit cytoplasmic blebbing, chromatin condensation, and fragmented DNA detected as a ladder in agarose gels or by labeling free DNA ends with terminal transferase; (ii) Vero cells infected with wild-type HSV-1(F) or cells expressing the alpha 4 gene and infected with the alpha 4- virus did not exhibit apoptosis; (iii) fragmentation of cellular DNA was observed in Vero cells that were mock-infected or infected with the alpha 4- virus and maintained at 39.5 degrees C, but not in cells infected with wild-type virus and maintained at the same temperature. Wild-type strains of HSV-1 with limited extrahuman passages, such as HSV-1 (F), carry a temperature-sensitive lesion in the alpha 4 gene and at 39.5 degrees C only alpha genes are expressed. These results indicate that the product of the alpha 4 gene is able to suppress apoptosis induced by the virus as well by other means.
Resumo:
Expression of the Bacillus subtilis nrgAB operon is derepressed during nitrogen-limited growth. We have identified a gene, tnrA, that is required for the activation of nrgAB expression under these growth conditions. Analysis of the DNA sequence of the tnrA gene revealed that it encodes a protein with sequence similarity to GlnR, the repressor of the B. subtilis glutamine synthetase operon. The tnrA mutant has a pleiotropic phenotype. Compared with wild-type cells, the tnrA mutant is impaired in its ability to utilize allantoin, gamma-aminobutyrate, isoleucine, nitrate, urea, and valine as nitrogen sources. During nitrogen-limited growth, transcription of the nrgAB, nasB, gabP, and ure genes is significantly reduced in the tnrA mutant compared with the levels seen in wild-type cells. In contrast, the level of glnRA expression is 4-fold higher in the, tnrA mutant than in wild-type cells during nitrogen restriction. The phenotype of the tnrA mutant indicates that a global nitrogen regulatory system is present in B. subtilis and that this system is distinct from the Ntr regulatory system found in enteric bacteria.
Resumo:
The yeast SIN1 protein is a nuclear protein that together with other proteins behaves as a transcriptional repressor of a family of genes. In addition, sin1 mutants are defective in proper mitotic chromosome segregation. In an effort to understand the basis for these phenotypes, we employed the yeast two-hybrid system to identify proteins that interact with SIN1 in vivo. Here we demonstrate that CDC23, a protein known to be involved in sister chromatid separation during mitosis, is able to directly interact with SIN1. Furthermore, using recombinant molecules in vitro, we show that the N terminal of SIN1 is sufficient to bind a portion of CDC23 consisting solely of tetratrico peptide repeats. Earlier experiments identified the C-terminal domain of SIN1 to be responsible for interaction with a protein that binds the regulatory region of HO, a gene whose transcription is repressed by SIN1. Taken together with the results presented here, we suggest that SIN1 is a chromatin protein having at least a dual function: The N terminal of SIN1 interacts with the tetratrico peptide repeat domains of CDC23, a protein involved in chromosome segregation, whereas the C terminal of SIN1 binds proteins involved in transcriptional regulation.
Resumo:
We describe a single autoregulatory cassette that allows reversible induction of transgene expression in response to tetracycline (tet). This cassette contains all of the necessary components previously described by others on two separate plasmids that are introduced sequentially over a period of months [Gossen, M. & Bujard, H. (1992) Proc. Natl. Acad. Sci. USA 89, 5547-5551]. The cassette is introduced using a retrovirus, allowing transfer into cell types that are difficult to transfect. Thus, populations of thousands of cells, rather than a few clones, can be isolated and characterized within weeks. To avoid potential interference of the strong retroviral long terminal repeat enhancer and promoter elements with the function of the tet-regulated cytomegalovirus minimal promoter, the vector is self-inactivating, eliminating transcription from the long terminal repeat after infection of target cells. Tandem tet operator sequences and the cytomegalovirus minimal promoter drive expression of a bicistronic mRNA, leading to transcription of the gene of interest (lacZ) and the internal ribosome entry site controlled transactivator (Tet repressor-VP16 fusion protein). In the absence of tet, there is a progressive increase in transactivator by means of an autoregulatory loop, whereas in the presence of tet, gene expression is prevented. Northern blot, biochemical, and single cell analyses have all shown that the construct yields low basal levels of gene expression and induction of one to two orders of magnitude. Thus, the current cassette of the retroviral construct (SIN-RetroTet vector) allows rapid delivery of inducible genes and should have broad applications to cultured cells, transgenic animals, and gene therapy.
Resumo:
Infection of cells with picornaviruses, such as poliovirus and encephalomyocarditis virus (EMCV), causes a shutoff of host protein synthesis. The molecular mechanism of the shutoff has been partly elucidated for poliovirus but not for EMCV. Translation initiation in eukaryotes is facilitated by the mRNA 5' cap structure to which the multisubunit translation initiation factor eIF4F binds to promote ribosome binding. Picornaviruses use a mechanism for the translation of their RNA that is independent of the cap structure. Poliovirus infection engenders the cleavage of the eIF4G (formerly p220) component of eIF4F and renders this complex inactive for cap-dependent translation. In contrast, EMCV infection does not result in eIF4G cleavage. Here, we report that both EMCV and poliovirus activate a translational repressor, 4E-BP1, that inhibits cap-dependent translation by binding to the cap-binding subunit eIF4E. Binding of eIF4E occurs only to the underphosphorylated form of 4E-BP1, and this interaction is highly regulated in cells. We show that 4E-BP1 becomes dephosphorylated upon infection with both EMCV and poliovirus. Dephosphorylation of 4E-BP1 temporally coincides with the shutoff of protein synthesis by EMCV but lags behind the shutoff and eIF4G cleavage in poliovirus-infected cells. Dephosphorylation of 4E-BP1 by specifically inhibiting cap-dependent translation may be the major cause of the shutoff phenomenon in EMCV-infected cells.
Resumo:
Isologous and heterologous immunoglobulins have been shown to be extremely effective as tolerogenic carriers for nearly 30 years. The efficacy of these proteins is due in part to their long half-life in vivo, as well as their ability to crosslink surface IgM with Fc receptors. The concept of using IgG as a carrier molecule to induce unresponsiveness in the adult immune system has been exploited for simple haptens, such as nucleosides, as well as for peptides. To further evaluate the in vivo potential of these molecules for inducing tolerance to a defined epitope, we have engineered a fusion protein of mouse IgG1 with the immunodominant epitope 12-26 from bacteriophage lambda cI repressor protein. This 15-mer, which contains both a B-cell and T-cell epitope, has been fused in-frame to the N terminus of a mouse heavy chain IgG1 construct, thus creating a "genetic hapten-carrier" system. We describe a novel in vitro and in vivo experimental system for studying the feasibility of engineered tolerogens, consisting of a recombinant flagellin challenge antigen and a murine IgG1 tolerogen, both expressing the lambda repressor epitope 12-26. Herein, we show that peptide-grafted IgG molecules injected i.v., or expressed by transfected, autologous B cells, can efficiently modulate the cellular and humoral immune responses to immunodominant epitopes. This model displays the feasibility of "tailor-designing" immune responses to whole antigens by selecting epitopes for either tolerance or immunity.
Resumo:
It has previously been argued that the repressor of protein synthesis initiation factor 4E, 4E-BP1, is a direct in vivo target of p42mapk. However, the immunosuppressant rapamycin blocks serum-induced 4E-BP1 phosphorylation and, in parallel, p70s6k activation, with no apparent effect on p42mapk activation. Consistent with this finding, the kinetics of serum-induced 4E-BP1 phosphorylation closely follow those of p70s6k activation rather than those of p42mapk. More striking, insulin, which does not induce p42mapk activation in human 293 cells or Swiss mouse 3T3 cells, induces 4E-BP1 phosphorylation and p70s6k activation in both cell types. Anisomycin, which, like insulin, does not activate p42mapk, promotes a small parallel increase in 4E-BP1 phosphorylation and p70s6k activation. The insulin effect on 4E-BP1 phosphorylation and p70s6k activation in both cell types is blocked by SQ20006, wortmannin, and rapamycin. These three inhibitors have no effect on p42mapk activation induced by phorbol 12-tetradecanoate 13-acetate, though wortmannin partially suppresses both the p70s6k response and the 4E-BP1 response. Finally, in porcine aortic endothelial cells stably transfected with either the wild-type platelet-derived growth factor receptor or a mutant receptor bearing the double point mutation 740F/751F, p42mapk activation in response to platelet-derived growth factor is unimpaired, but increased 4E-BP1 phosphorylation is ablated, as previously reported for p70s6k. The data presented here demonstrate that 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase.
Resumo:
The c-rel protooncogene encodes a subunit of the NF-kappa B-like family of transcription factors. Mice lacking Rel are defective in mitogenic activation of B and T lymphocytes and display impaired humoral immunity. In an attempt to identify changes in gene expression that accompany the T-cell stimulation defects associated with the loss of Rel, we have examined the expression of cell surface activation markers and cytokine production in mitogen-stimulated Rel-/- T cells. The expression of cell surface markers including the interleukin 2 receptor alpha (IL-2R alpha) chain (CD25), CD69 and L-selectin (CD62) is normal in mitogen-activated Rel-/- T cells, but cytokine production is impaired. In Rel-/- splenic T cell cultures stimulated with phorbol 12-myristate 13-acetate and ionomycin, the levels of IL-3, IL-5, granulocyte- macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor alpha (TNF-alpha), and gamma interferon (IFN-gamma) were only 2- to 3-fold lower compared with normal T cells. In contrast, anti-CD3 and anti-CD28 stimulated Rel-/- T cells, which fail to proliferate, make little or no detectable cytokines. Exogenous IL-2, which restitutes the proliferative response of the anti-CD3- and anti-CD28-treated Rel-/- T cells, restores production of IL-5, TNF-alpha, and IFN-gamma, but not IL-3 and GM-CSF expression to approximately normal levels. In contrast to mitogen-activated Rel-/- T cells, lipopolysaccharide-stimulated Rel-/- macrophages produce higher than normal levels of GM-CSF. These findings establish that Rel can function as an activator or repressor of gene expression and is required by T lymphocytes for production of IL-3 and GM-CSF.