79 resultados para Postmortem Human Brain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe molecular and clinical findings in an immunocompetent patient with an oligoastrocytoma and the concomitant presence of the human papovavirus, JC virus (JCV), which is the etiologic agent of the subacute, debilitating demyelinating disease, progressive multifocal leukoencephalopathy. Histologic review revealed a glial neoplasm consisting primarily of a moderately cellular oligodendroglioma with distinct areas of a fibrillary astrocytoma. Immunohistochemical analysis revealed nuclear staining of tumor cells with antibodies against the viral oncoprotein [tumor antigen (T antigen)], the proliferation marker (Ki67), and the cellular proliferation regulator (p53). Using primers specific to the JCV control region, PCR yielded amplified DNA that was identical to the control region of the Mad-4 strain of the virus. PCR analysis demonstrated the presence of the genome for the viral oncoprotein, T antigen, and results from primer extension studies revealed synthesis of the viral early RNA for T antigen in the tumor tissues. The presence of viral T antigen in the tumor tissue was further demonstrated by immunoblot assay. To our knowledge, this is the first report of the presence of JCV DNA, RNA, and T antigen in tissue in which viral T antigen is localized to tumor cell nuclei and suggests the possible association of JCV with some glial neoplasms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphoprotein phosphatase 2A (PP2A) is one of the four major protein serine/threonine phosphatases found in all eukaryotic cells. We have shown that the 36-kDa catalytic subunit of PP2A is carboxyl methylated in eukaryotic cells, and we have previously identified and purified a novel methyltransferase (MTase) that is responsible for this modification. Here, we describe a novel protein carboxyl methyl-esterase (MEase) from bovine brain that demethylates PP2A. The enzyme has been purified to homogeneity as a monomeric 46-kDa soluble protein. The MEase is highly specific for PP2A. It does not catalyze the demethylation of other protein or peptide methylesters. Moreover, MEase activity is dramatically inhibited by nanomolar concentrations of okadaic acid, a specific inhibitor of PP2A. From these results, we conclude that PP2A methylation is controlled by two specific enzymes, a MTase and a MEase. Since PP2A methylation is highly conserved in eukaryotes ranging from human to yeast, it is likely that this system plays an important role in phosphatase regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high incidence of neurological disorders in patients afflicted with acquired immunodeficiency syndrome (AIDS) may result from human immunodeficiency virus type 1 (HIV-1) induction of chemotactic signals and cytokines within the brain by virus-encoded gene products. Transforming growth factor beta1 (TGF-beta1) is an immunomodulator and potent chemotactic molecule present at elevated levels in HIV-1-infected patients, and its expression may thus be induced by viral trans-activating proteins such as Tat. In this report, a replication-defective herpes simplex virus (HSV)-1 tat gene transfer vector, dSTat, was used to transiently express HIV-1 Tat in glial cells in culture and following intracerebral inoculation in mouse brain in order to directly determine whether Tat can increase TGF-beta1 mRNA expression. dSTat infection of Vero cells transiently transfected by a panel of HIV-1 long terminal repeat deletion mutants linked to the bacterial chloramphenicol acetyltransferase reporter gene demonstrated that vector-expressed Tat activated the long terminal repeat in a trans-activation response element-dependent fashion independent of the HSV-mediated induction of the HIV-1 enhancer, or NF-kappaB domain. Northern blot analysis of human astrocytic glial U87-MG cells transfected by dSTat vector DNA resulted in a substantial increase in steady-state levels of TGF-beta1 mRNA. Furthermore, intracerebral inoculation of dSTat followed by Northern blot analysis of whole mouse brain RNA revealed an increase in levels of TGF-beta1 mRNA similar to that observed in cultured glial cells transfected by dSTat DNA. These results provided direct in vivo evidence for the involvement of HIV-1 Tat in activation of TGF-beta1 gene expression in brain. Tat-mediated stimulation of TGF-beta1 expression suggests a novel pathway by which HIV-1 may alter the expression of cytokines in the central nervous system, potentially contributing to the development of AIDS-associated neurological disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PCR was used to isolate nucleotide sequences that may encode novel members of the neuropeptide Y receptor family. By use of a PCR product as a hybridization probe, a full-length human cDNA was isolated that encodes a 375-aa protein with a predicted membrane topology identifying it as a member of the G-protein-coupled receptor superfamily. After stable transfection of the cDNA into human embryonic kidney 293 cells, the receptor exhibited high affinity (Kd = 2.8 nM) for 125I-labeled human pancreatic polypeptide (PP). Competition binding studies in whole cells indicated the following rank order of potency: human PP = bovine PP > or = human [Pro34]peptide YY > rat PP > human peptide YY = human neuropeptide Y. Northern blot analysis revealed that human PP receptor mRNA is most abundantly expressed in skeletal muscle and, to a lesser extent, in lung and brain tissue. A rat cDNA clone encoding a high-affinity PP receptor that is 74% identical to the human PP receptor at the amino acid level was also isolated. These receptor clones will be useful in elucidating the functional role of PP and designing selective PP receptor agonists and antagonists.