116 resultados para NITRIC OXIDE SYNTHASE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental evidence suggests that reactive nitrogen oxide species can contribute significantly to postischemic myocardial injury. The aim of the present study was to evaluate the role of two reactive nitrogen oxide species, nitroxyl (NO−) and nitric oxide (NO⋅), in myocardial ischemia and reperfusion injury. Rabbits were subjected to 45 min of regional myocardial ischemia followed by 180 min of reperfusion. Vehicle (0.9% NaCl), 1 μmol/kg S-nitrosoglutathione (GSNO) (an NO⋅ donor), or 3 μmol/kg Angeli’s salt (AS) (a source of NO−) were given i.v. 5 min before reperfusion. Treatment with GSNO markedly attenuated reperfusion injury, as evidenced by improved cardiac function, decreased plasma creatine kinase activity, reduced necrotic size, and decreased myocardial myeloperoxidase activity. In contrast, the administration of AS at a hemodynamically equieffective dose not only failed to attenuate but, rather, aggravated reperfusion injury, indicated by an increased left ventricular end diastolic pressure, myocardial creatine kinase release and necrotic size. Decomposed AS was without effect. Co-administration of AS with ferricyanide, a one-electron oxidant that converts NO− to NO⋅, completely blocked the injurious effects of AS and exerted significant cardioprotective effects similar to those of GSNO. These results demonstrate that, although NO⋅ is protective, NO− increases the tissue damage that occurs during ischemia/reperfusion and suggest that formation of nitroxyl may contribute to postischemic myocardial injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the heme-copper terminal oxidases of Thermus thermophilus (called ba3 and caa3) are able to catalyze the reduction of nitric oxide (NO) to nitrous oxide (N2O) under reducing anaerobic conditions. The rate of NO consumption and N2O production were found to be linearly dependent on enzyme concentration, and activity was abolished by enzyme denaturation. Thus, contrary to the eukaryotic enzyme, both T. thermophilus oxidases display a NO reductase activity (3.0 ± 0.7 mol NO/mol ba3 × min and 32 ± 8 mol NO/mol caa3 × min at [NO] ≈ 50 μM and 20°C) that, though considerably lower than that of bona fide NO reductases (300–4,500 mol NO/mol enzyme × min), is definitely significant. We also show that for ba3 oxidase, NO reduction is associated to oxidation of cytochrome b at a rate compatible with turnover, suggesting a mechanism consistent with the stoichiometry of the overall reaction. We propose that the NO reductase activity of T. thermophilus oxidases may depend on a peculiar CuB+ coordination, which may be revealed by the forthcoming three-dimensional structure. These findings support the hypothesis of a common phylogeny of aerobic respiration and bacterial denitrification, which was proposed on the basis of structural similarities between the Pseudomonas stutzeri NO reductase and the cbb3 terminal oxidases. Our findings represent functional evidence in support of this hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) functions as a signaling agent by activation of the soluble isoform of guanylate cyclase (sGC), a heterodimeric hemoprotein. NO binds to the heme of sGC and triggers formation of cGMP from GTP. Here we report direct kinetic measurements of the multistep binding of NO to sGC and correlate these presteady state events with activation of enzyme catalysis. NO binds to sGC to form a six-coordinate, nonactivated, intermediate (kon > 1.4 × 108 M−1⋅s−1 at 4°C). Subsequent release of the axial histidine heme ligand is shown to be the molecular step responsible for activation of the enzyme. The rate at which this step proceeds also depends on NO concentration (k = 2.4 × 105 M−1⋅s−1 at 4°C), thus identifying a novel mode of regulation by NO. NO binding to the isolated heme domain of sGC was also rapid (k = 7.1 ± 2 × 108 M−1⋅s−1 at 4°C); however, no intermediate was observed. The data show that sGC acts as an extremely fast, specific, and highly efficient trap for NO and that cleavage of the iron-histidine bond provides the driving force for activation of sGC. In addition, the kinetic data indicate that transport or stabilization of NO is not necessary for effective signal transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A toxic dose of the nitric oxide (NO) donor S-nitrosoglutathione (GSNO; 1 mM) promoted apoptotic cell death of RAW 264.7 macrophages, which was attenuated by cellular preactivation with a nontoxic dose of GSNO (200 μM) or with lipopolysaccharide, interferon-γ, and NG-monomethyl-l-arginine (LPS/IFN-γ/NMMA) for 15 h. Protection from apoptosis was achieved by expression of cyclooxygenase-2 (Cox-2). Here we investigated the underlying mechanisms leading to Cox-2 expression. LPS/IFN-γ/NMMA prestimulation activated nuclear factor (NF)-κB and promoted Cox-2 expression. Cox-2 induction by low-dose GSNO demanded activation of both NF-κB and activator protein-1 (AP-1). NF-κB supershift analysis implied an active p50/p65 heterodimer, and a luciferase reporter construct, containing four copies of the NF-κB site derived from the murine Cox-2 promoter, confirmed NF-κB activation after NO addition. An NF-κB decoy approach abrogated not only Cox-2 expression after low-dose NO or after LPS/IFN-γ/NMMA but also inducible protection. The importance of AP-1 for Cox-2 expression and cell protection by low-level NO was substantiated by using the extracellular signal-regulated kinase inhibitor PD98059, blocking NO-elicited Cox-2 expression, but leaving the cytokine signal unaltered. Transient transfection of a dominant-negative c-Jun mutant further attenuated Cox-2 expression by low-level NO. Whereas cytokine-mediated Cox-2 induction relies on NF-κB activation, a low-level NO–elicited Cox-2 response required activation of both NF-κB and AP-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) has diverse roles in intercellular communication and (at higher levels) in immune-mediated cell killing. NO reacts with many cellular targets, with cell-killing effects correlated to inactivation of key enzymes through nitrosylation of their iron-sulfur centers. SoxR protein, a redox-sensitive transcription activator dependent on the oxidation state of its binuclear iron-sulfur ([2Fe-2S]) centers, is also activated in Escherichia coli on exposure to macrophage-generated NO. We show here that SoxR activation by NO occurs through direct modification of the [2Fe-2S] centers to form protein-bound dinitrosyl-iron-dithiol adducts, which we have observed both in intact bacterial cells and in purified SoxR after NO treatment. Functional activation through nitrosylation of iron-sulfur centers contrasts with the inactivation typically caused by this modification. Purified, nitrosylated SoxR has transcriptional activity similar to that of oxidized SoxR and is relatively stable. In contrast, nitrosylated SoxR is short-lived in intact cells, indicative of mechanisms that actively dispose of nitrosylated iron-sulfur centers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apoptosis triggered by death receptors proceeds after defined signal-transduction pathways. Whether signaling at the receptor level is regulated by intracellular messengers is still unknown. We have investigated the role of two messengers, ceramide and nitric oxide (NO), on the apoptotic pathway activated in human monocytic U937 cells by tumor necrosis factor-α (TNF-α) working at its p55 receptor. Two transduction events, the receptor recruitment of the adapter protein, TRADD, and the activation of the initiator caspase, caspase 8, were investigated. When administered alone, neither of the messengers had any effect on these events. In combination with TNF-α, however, ceramide potentiated, whereas NO inhibited, TNF-α-induced TRADD recruitment and caspase 8 activity. The effect of NO, which was cGMP-dependent, was due to inhibition of the TNF-α-induced generation of ceramide. Our results identify a mechanism of regulation of a signal-transduction pathway activated by death receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nitric-oxide synthase (NOS; EC 1.14.13.39) reaction is formulated as a partially tetrahydrobiopterin (H4Bip)-dependent 5-electron oxidation of a terminal guanidino nitrogen of l-arginine (Arg) associated with stoichiometric consumption of dioxygen (O2) and 1.5 mol of NADPH to form l-citrulline (Cit) and nitric oxide (·NO). Analysis of NOS activity has relied largely on indirect methods such as quantification of nitrite/nitrate or the coproduct Cit; we therefore sought to directly quantify ·NO formation from purified NOS. However, by two independent methods, NOS did not yield detectable ·NO unless superoxide dismutase (SOD; EC 1.15.1.1) was present. In the presence of H4Bip, internal ·NO standards were only partially recovered and the dismutation of superoxide (O2⨪), which otherwise scavenges ·NO to yield ONOO−, was a plausible mechanism of action of SOD. Under these conditions, a reaction between NADPH and ONOO− resulted in considerable overestimation of enzymatic NADPH consumption. SOD lowered the NADPH:Cit stoichiometry to 0.8–1.1, suggesting either that additional reducing equivalents besides NADPH are required to explain Arg oxidation to ·NO or that ·NO was not primarily formed. The latter was supported by an additional set of experiments in the absence of H4Bip. Here, recovery of internal ·NO standards was unaffected. Thus, a second activity of SOD, the conversion of nitroxyl (NO−) to ·NO, was a more likely mechanism of action of SOD. Detection of NOS-derived nitrous oxide (N2O) and hydroxylamine (NH2OH), which cannot arise from ·NO decomposition, was consistent with formation of an ·NO precursor molecule such as NO−. When, in the presence of SOD, glutathione was added, S-nitrosoglutathione was detected. Our results indicate that ·NO is not the primary reaction product of NOS-catalyzed Arg turnover and an alternative reaction mechanism and stoichiometry have to be taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently reported development of an experimental model for the study of nitric oxide (NO·) toxicology in vivo. SJL mice were injected with superantigen-bearing RcsX (pre-B-cell lymphoma) cells, which migrated to the spleen and lymph nodes, where their rapid growth induced activation of macrophages to produce large amounts of NO· over a period of several weeks. In the experiments described here, we used this model to investigate mutagenesis in splenocytes exposed to NO· during RcsX cell growth. Transgenic mice were produced by crossbreeding animals of the pUR288 transgenic C57BL/6 and SJL strains. RcsX cells were injected into F1 mice and NO· production was confirmed by quantification of urinary nitrate, the ultimate metabolite of NO·. Mutant frequency in the lacZ gene of the pUR288 plasmid was determined in DNA isolated from spleen (target) and kidney (nontarget) tissues. A significant elevation in mutant frequency was found in the spleen, but not in the kidney, of tumor-bearing mice. Furthermore, increases in mutant frequency in the spleen as well as NO· production were abrogated by administration of N-methylarginine, a NO· inhibitor, to mice following injection of RcsX cells. These results indicate that NO· had mutagenic activity in RcsX tumor-bearing mice and thus support a possible role for its involvement in the carcinogenic process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO·) does not react significantly with thiol groups under physiological conditions, whereas a variety of endogenous NO donor molecules facilitate rapid transfer to thiol of nitrosonium ion (NO+, with one less electron than NO·). Here, nitrosonium donors are shown to decrease the efficacy of evoked neurotransmission while increasing the frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs). In contrast, pure NO· donors have little effect (displaying at most only a slight increase) on the amplitude of evoked EPSCs and frequency of spontaneous mEPSCs in our preparations. These findings may help explain heretofore paradoxical observations that the NO moiety can either increase, decrease, or have no net effect on synaptic activity in various preparations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ADP-ribose) polymerase (PARP) transfers ADP ribose groups from NAD+ to nuclear proteins after activation by DNA strand breaks. PARP overactivation by massive DNA damage causes cell death via NAD+ and ATP depletion. Heretofore, PARP has been thought to be inactive under basal physiologic conditions. We now report high basal levels of PARP activity and DNA strand breaks in discrete neuronal populations of the brain, in ventricular ependymal and subependymal cells and in peripheral tissues. In some peripheral tissues, such as skeletal muscle, spleen, heart, and kidney, PARP activity is reduced only partially in mice with PARP-1 gene deletion (PARP-1−/−), implicating activity of alternative forms of PARP. Glutamate neurotransmission involving N-methyl-d-aspartate (NMDA) receptors and neuronal nitric oxide synthase (nNOS) activity in part mediates neuronal DNA strand breaks and PARP activity, which are diminished by NMDA antagonists and NOS inhibitors and also diminished in mice with targeted deletion of nNOS gene (nNOS−/−). An increase in NAD+ levels after treatment with NMDA antagonists or NOS inhibitors, as well as in nNOS−/− mice, indicates that basal glutamate-PARP activity regulates neuronal energy dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms underlying neuronal ischemic preconditioning, a phenomenon in which brief episodes of ischemia protect against the lethal effects of subsequent periods of prolonged ischemia, are poorly understood. Ischemia can be modeled in vitro by oxygen-glucose deprivation (OGD). We report here that OGD preconditioning induces p21ras (Ras) activation in an N-methyl-d-aspartate receptor- and NO-dependent, but cGMP-independent, manner. We demonstrate that Ras activity is necessary and sufficient for OGD tolerance in neurons. Pharmacological inhibition of Ras, as well as a dominant negative mutant Ras, block OGD preconditioning whereas a constitutively active form of Ras promotes neuroprotection against lethal OGD insults. In contrast, the activity of phosphatidyl inositol 3-kinase is not required for OGD preconditioning because inhibition of phosphatidyl inositol 3-kinase with a chemical inhibitor or with a dominant negative mutant does not have any effect on the development of OGD tolerance. Furthermore, using recombinant adenoviruses and pharmacological inhibitors, we show that downstream of Ras the extracellular regulated kinase cascade is required for OGD preconditioning. Our observations indicate that activation of the Ras/extracellular regulated kinase cascade by NO is a critical mechanism for the development of OGD tolerance in cortical neurons, which may also play an important role in ischemic preconditioning in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) and nitric oxide (NO) are important participants in signal transduction that could provide the cellular basis for activity-dependent regulation of neuronal excitability. In young rat cortical brain slices and undifferentiated PC12 cells, paired application of depolarization/agonist stimulation and oxidation induces long-lasting potentiation of subsequent Ca2+ signaling that is reversed by hypoxia. This potentiation critically depends on NO production and involves cellular ROS utilization. The ability to develop the Ca2+ signal potentiation is regulated by the developmental stage of nerve tissue, decreasing markedly in adult rat cortical neurons and differentiated PC12 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the function of metallothionein (MT), a 6- to 7-kDa cysteine-rich metal binding protein, remains unclear, it has been suggested from in vitro studies that MT is an important component of intracellular redox signaling, including being a target for nitric oxide (NO). To directly study the interaction between MT and NO in live cells, we generated a fusion protein consisting of MT sandwiched between two mutant green fluorescent proteins (GFPs). In vitro studies with this chimera (FRET-MT) demonstrate that fluorescent resonance energy transfer (FRET) can be used to follow conformational changes indicative of metal release from MT. Imaging experiments with live endothelial cells show that agents that increase cytoplasmic Ca2+ act via endogenously generated NO to rapidly and persistently release metal from MT. A role for this interaction in intact tissue is supported by the finding that the myogenic reflex of mesenteric arteries is absent in MT knockout mice (MT−/−) unless endogenous NO synthesis is blocked. These results are the first application of intramolecular green fluorescent protein (GFP)-based FRET in a native protein and demonstrate the utility of FRET-MT as an intracellular surrogate indicator of NO production. In addition, an important role of metal thiolate clusters of MT in NO signaling in vascular tissue is revealed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NO2Tyr (3-Nitrotyrosine) is a modified amino acid that is formed by nitric oxide-derived species and has been implicated in the pathology of diverse human diseases. Nitration of active-site tyrosine residues is known to compromise protein structure and function. Although free NO2Tyr is produced in abundant concentrations under pathological conditions, its capacity to alter protein structure and function at the translational or posttranslational level is unknown. Here, we report that free NO2Tyr is transported into mammalian cells and selectively incorporated into the extreme carboxyl terminus of α-tubulin via a posttranslational mechanism catalyzed by the enzyme tubulin–tyrosine ligase. In contrast to the enzymatically regulated carboxyl-terminal tyrosination/detyrosination cycle of α-tubulin, incorporation of NO2Tyr shows apparent irreversibility. Nitrotyrosination of α-tubulin induces alterations in cell morphology, changes in microtubule organization, loss of epithelial-barrier function, and intracellular redistribution of the motor protein cytoplasmic dynein. These observations imply that posttranslational nitrotyrosination of α-tubulin invokes conformational changes, either directly or via allosteric interactions, in the surface-exposed carboxyl terminus of α-tubulin that compromises the function of this critical domain in regulating microtubule organization and binding of motor- and microtubule-associated proteins. Collectively, these observations illustrate a mechanism whereby free NO2Tyr can impact deleteriously on cell function under pathological conditions encompassing reactive nitrogen species production. The data also yield further insight into the role that the α-tubulin tyrosination/detyrosination cycle plays in microtubule function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gaseous second messenger nitric oxide (NO), which readily diffuses in brain tissue, has been implicated in cerebellar long-term depression (LTD), a form of synaptic plasticity thought to be involved in cerebellar learning. Can NO diffusion facilitate cerebellar learning? The inferior olive (IO) cells, which provide the error signals necessary for modifying the granule cell–Purkinje cell (PC) synapses by LTD, fire at ultra-low firing rates in vivo, rarely more than 2–4 spikes within a second. In this paper, we show that NO diffusion can improve the transmission of sporadic IO error signals to PCs within cerebellar cortical functional units, or microzones. To relate NO diffusion to adaptive behavior, we add NO diffusion and a “volumic” LTD learning rule, i.e., a learning rule that depends both on the synaptic activity and on the NO concentration at the synapse, to a cerebellar model for arm movement control. Our results show that biologically plausible diffusion leads to an increase in information transfer of the error signals to the PCs when the IO firing rate is ultra-low. This, in turn, enhances cerebellar learning as shown by improved performance in an arm-reaching task.