172 resultados para Mammalian cell expression system
Resumo:
Previous studies in transgenic mice and cultured cells have indicated that the major enhancer function for erythroid cell expression of the globin genes is provided by the heterodimeric basic-leucine zipper transcription factor NF-E2. Globin gene expression within cultured mouse erythroleukemia cells is highly dependent on NF-E2. To examine the requirement for this factor in vivo, we used homologous recombination in embryonic stem cells to generate mice lacking the hematopoietic-specific subunit, p45 NF-E2. The most dramatic aspect of the homozygous mutant mice was an absence of circulating platelets, which led to the death of most animals due to hemorrhage. In contrast, the effect of loss of NF-E2 on the erythroid lineage was surprisingly mild. Although neonates exhibited severe anemia and dysmorphic red-cell changes, probably compounded by concomitant bleeding, surviving adults exhibited only mild changes consistent with a small decrease in the hemoglobin content per cell. p45 NF-E2-null mice responded to anemia with compensatory reticulocytosis and splenomegaly. Globin chain synthesis was balanced, and switching from fetal to adult globins progressed normally. Although these findings are consistent with the substitution of NF-E2 function in vivo by one or more compensating proteins, gel shift assays using nuclear extracts from p45 NF-E2-null mice failed to reveal novel complexes formed on an NF-E2 binding site. Thus, regulation of globin gene transcription through NF-E2 binding sites in vivo is more complex than has been previously appreciated.
Resumo:
The phosphorylation-dependent mechanisms regulating activation of the human neutrophil respiratory-burst enzyme, NADPH oxidase, have not been elucidated. We have shown that phosphatidic acid (PA) and diacylglycerol (DG), products of phospholipase activation, synergize to activate NADPH oxidase in a cell-free system. We now report that activation by PA plus DG involves protein kinase activity, unlike other cell-free system activators. NADPH oxidase activation by PA plus DG is reduced approximately 70% by several protein kinase inhibitors [1-(5-isoquinolinesulfonyl)piperazine, staurosporine, GF-109203X]. Similarly, depletion of ATP by dialysis reduces PA plus DG-mediated NADPH oxidase activation by approximately 70%. Addition of ATP, but not a nonhydrolyzable ATP analog, to the dialyzed system restores activation levels to normal. In contrast, these treatments have little effect on NADPH oxidase activation by arachidonic acid or SDS plus DG. PA plus DG induces the phosphorylation of a number of endogenous proteins. Phosphorylation is largely mediated by PA, not DG. A predominant substrate is p47-phox, a phosphoprotein component of NADPH oxidase. Phosphorylation of p47-phox precedes activation of NADPH oxidase and is markedly reduced by the protein kinase inhibitors. In contrast, arachidonic acid alone or SDS plus DG is a poor activator of protein phosphorylation in the cell-free system. Thus, PA induces activation of one or more protein kinases that regulate NADPH oxidase activation in a cell-free system. This cell-free system will be useful for identifying a functionally important PA-activated protein kinase(s) and for dissecting the phosphorylation-dependent mechanisms responsible for NADPH oxidase activation.
Resumo:
Studies on cultured cells have shown that agonists induce several types of G protein-coupled receptors to undergo internalization. We have investigated this phenomenon in rat striatum, using substance P (SP)-induced internalization of the SP receptor (SPR) as our model system. Within 1 min of a unilateral striatal injection of SP in the anesthetized rat, nearly 60% of the SPR-immunoreactive neurons within the injection zone display massive internalization of the SPR--i.e., 20-200 SPR+ endosomes per cell body. Within the dendrites the SPR undergoes a striking translocation from the plasma membrane to endosomes, and these dendrites also undergo a morphological reorganization, changing from a structure of rather uniform diameter to one characterized by large, swollen varicosities connected by thin fibers. In both cell bodies and dendrites the number of SPR+ endosomes returns to baseline within 60 min of SP injection. The number of neurons displaying substantial endosomal SPR internalization is dependent on the concentration of injected SP, and the SP-induced SPR internalization is inhibited by the nonpeptide neurokinin 1 receptor antagonist RP-67,580. These data demonstrate that in the central nervous system in vivo, SP induces a rapid and widespread SPR internalization in the cell bodies and dendrites and a structural reorganization of the dendrites. These results suggest that many of the observations that have been made on the internalization and recycling of G protein-coupled receptors in in vitro transfected cell systems are applicable to similar events that occur in the mammalian central nervous system in vivo.
Resumo:
Ca2+ released from presynaptic and postsynaptic intracellular stores plays important roles in activity-dependent synaptic plasticity, including long-term depression (LTD) of synaptic strength. At Schaffer collateral–CA1 synapses in the hippocampus, presynaptic ryanodine receptor-gated stores appear to mobilize some of the Ca2+ necessary to induce LTD. Cyclic ADP-ribose (cADPR) has recently been proposed as an endogenous activator of ryanodine receptors in sea urchin eggs and several mammalian cell types. Here, we provide evidence that cADPR-mediated signaling pathways play a key role in inducing LTD. We show that biochemical production of cGMP increases cADPR concentration in hippocampal slices in vitro, and that blockade of cGMP-dependent protein kinase, cADPR receptors, or ryanodine-sensitive Ca2+ stores each prevent the induction of LTD at Schaffer collateral–CA1 synapses. A lack of effect of postsynaptic infusion of either cADPR antagonist indicates a probable presynaptic site of action.
Resumo:
Phosphatidylserine (PtdSer) synthesis in Chinese hamster ovary (CHO) cells occurs through the exchange of l-serine with the base moiety of phosphatidylcholine or phosphatidylethanolamine. The synthesis is depressed on the addition of PtdSer to the culture medium. A CHO cell mutant named mutant 29, whose PtdSer biosynthesis is highly resistant to this depression by exogenous PtdSer, has been isolated from CHO-K1 cells. In the present study, the PtdSer-resistant PtdSer biosynthesis in the mutant was traced to a point mutation in the PtdSer synthase I gene, pssA, resulting in the replacement of Arg-95 of the synthase by lysine. Introduction of the mutant pssA cDNA, but not the wild-type pssA cDNA, into CHO-K1 cells induced the PtdSer-resistant PtdSer biosynthesis. In a cell-free system, the serine base-exchange activity of the wild-type pssA-transfected cells was inhibited by PtdSer, but that of the mutant pssA-transfected cells was resistant to the inhibition. Like the mutant 29 cells, the mutant pssA-transfected cells grown without exogenous PtdSer exhibited an ≈2-fold increase in the cellular PtdSer level compared with that in CHO-K1 cells, although the wild-type pssA-transfected cells did not exhibit such a significant increase. These results indicated that the inhibition of PtdSer synthase I by PtdSer is essential for the maintenance of a normal PtdSer level in CHO-K1 cells and that Arg-95 of the synthase is a crucial residue for the inhibition.
Resumo:
Voltage-dependent Ca2+ currents evoke synaptic transmitter release. Of six types of Ca2+ channels, L-, N-, P-, Q-, R-, and T-type, only N- and P/Q-type channels have been pharmacologically identified to mediate action-potential-evoked transmitter release in the mammalian central nervous system. We tested whether Ca2+ channels other than N- and P/Q-type control transmitter release in a calyx-type synapse of the rat medial nucleus of the trapezoid body. Simultaneous recordings of presynaptic Ca2+ influx and the excitatory postsynaptic current evoked by a single action potential were made at single synapses. The R-type channel, a high-voltage-activated Ca2+ channel resistant to L-, N-, and P/Q-type channel blockers, contributed 26% of the total Ca2+ influx during a presynaptic action potential. This Ca2+ current evoked transmitter release sufficiently large to initiate an action potential in the postsynaptic neuron. The R-type current controlled release with a lower efficacy than other types of Ca2+ currents. Activation of metabotropic glutamate receptors and γ-aminobutyric acid type B receptors inhibited the R-type current. Because a significant fraction of presynaptic Ca2+ channels remains unidentified in many other central synapses, the R-type current also could contribute to evoked transmitter release in these synapses.
Resumo:
Substance P, acting via the neurokinin 1 receptor (NK1R), plays an important role in mediating a variety of inflammatory processes. However, its role in acute pancreatitis has not been previously described. We have found that, in normal mice, substance P levels in the pancreas and pancreatic acinar cell expression of NK1R are both increased during secretagogue-induced experimental pancreatitis. To evaluate the role of substance P, pancreatitis was induced in mice that genetically lack NK1R by administration of 12 hourly injections of a supramaximally stimulating dose of the secretagogue caerulein. During pancreatitis, the magnitude of hyperamylasemia, hyperlipasemia, neutrophil sequestration in the pancreas, and pancreatic acinar cell necrosis were significantly reduced in NK1R−/− mice when compared with wild-type NK1R+/+ animals. Similarly, pancreatitis-associated lung injury, as characterized by intrapulmonary sequestration of neutrophils and increased pulmonary microvascular permeability, was reduced in NK1R−/− animals. These effects of NK1R deletion indicate that substance P, acting via NK1R, plays an important proinflammatory role in regulating the severity of acute pancreatitis and pancreatitis-associated lung injury.
Resumo:
Coincidence detection is important for functions as diverse as Hebbian learning, binaural localization, and visual attention. We show here that extremely precise coincidence detection is a natural consequence of the normal function of rectifying electrical synapses. Such synapses open to bidirectional current flow when presynaptic cells depolarize relative to their postsynaptic targets and remain open until well after completion of presynaptic spikes. When multiple input neurons fire simultaneously, the synaptic currents sum effectively and produce a large excitatory postsynaptic potential. However, when some inputs are delayed relative to the rest, their contributions are reduced because the early excitatory postsynaptic potential retards the opening of additional voltage-sensitive synapses, and the late synaptic currents are shunted by already opened junctions. These mechanisms account for the ability of the lateral giant neurons of crayfish to sum synchronous inputs, but not inputs separated by only 100 μsec. This coincidence detection enables crayfish to produce reflex escape responses only to very abrupt mechanical stimuli. In light of recent evidence that electrical synapses are common in the mammalian central nervous system, the mechanisms of coincidence detection described here may be widely used in many systems.
Resumo:
Chloroperoxidase is a versatile heme enzyme which can cross over the catalytic boundaries of other oxidative hemoproteins and perform multiple functions. Chloroperoxidase, in addition to catalyzing classical peroxidative reactions, also acts as a P450 cytochrome and a potent catalase. The multiple functions of chloroperoxidase must be derived from its unique active site structure. Chloroperoxidase possesses a proximal cysteine thiolate heme iron ligand analogous to the P450 cytochromes; however, unlike the P450 enzymes, chloroperoxidase possesses a very polar environment distal to its heme prosthetic group and contains a glutamic acid residue in close proximity to the heme iron. The presence of a thiolate ligand in chloroperoxidase has long been thought to play an essential role in its chlorination and epoxidation activities; however, the research reported in this paper proves that hypothesis to be invalid. To explore the role of Cys-29, the amino acid residue supplying the thiolate ligand in chloroperoxidase, Cys-29 has been replaced with a histidine residue. Mutant clones of the chloroperoxidase genome have been expressed in a Caldariomyces fumago expression system by using gene replacement rather than gene insertion technology. C. fumago produces wild-type chloroperoxidase, thus requiring gene replacement of the wild type by the mutant gene. To the best of our knowledge, this is the first time that gene replacement has been reported for this type of fungus. The recombinant histidine mutants retain most of their chlorination, peroxidation, epoxidation, and catalase activities. These results downplay the importance of a thiolate ligand in chloroperoxidase and suggest that the distal environment of the heme active site plays the major role in maintaining the diverse activities of this enzyme.
Resumo:
The repair of chromosomal double-strand breaks (DSBs) is necessary for genomic integrity in all organisms. Genetic consequences of misrepair include chromosomal loss, deletion, and duplication resulting in loss of heterozygosity (LOH), a common finding in human solid tumors. Although work with radiation-sensitive cell lines suggests that mammalian cells primarily rejoin DSBs by nonhomologous mechanisms, alternative mechanisms that are implicated in chromosomal LOH, such as allelic recombination, may also occur. We have examined chromosomal DSB repair between homologs in a gene targeted mammalian cell line at the retinoblastoma (Rb) locus. We have found that allelic recombinational repair occurs in mammalian cells and is increased at least two orders of magnitude by the induction of a chromosomal DSB. One consequence of allelic recombination is LOH at the Rb locus. Some of the repair events also resulted in other types of genetic instability, including deletions and duplications. We speculate that mammalian cells may have developed efficient nonhomologous DSB repair processes to bypass allelic recombination and the potential for reduction to homozygosity.
Resumo:
To understand the structure, role, and regulation of individual Ca2+ pumps in plants, we have used yeast as a heterologous expression system to test the function of a gene from Arabidopsis thaliana (ECA1). ECA1 encoded a 116-kDa polypeptide that has all the conserved domains common to P-type Ca2+ pumps (EC 3.6.1.38). The amino acid sequence shared more identity with sarcoplasmic/endoplasmic reticulum (53%) than with plasma membrane (32%) Ca2+ pumps. Yeast mutants defective in a Golgi Ca2+ pump (pmr1) or both Golgi and vacuolar Ca2+ pumps (pmr1 pmc1 cnb1) were sensitive to growth on medium containing 10 mM EGTA or 3 mM Mn2+. Expression of ECA1 restored growth of either mutant on EGTA. Membranes were isolated from the pmr1 pmc1 cnb1 mutant transformed with ECA1 to determine if the ECA1 polypeptide (ECA1p) could be phosphorylated as intermediates of the reaction cycle of Ca2+-pumping ATPases. In the presence of [γ-32P]ATP, ECA1p formed a Ca2+-dependent [32P]phosphoprotein of 106 kDa that was sensitive to hydroxylamine. Cyclopiazonic acid, a blocker of animal sarcoplasmic/endoplasmic reticulum Ca2+ pumps, inhibited the formation of the phosphoprotein, whereas thapsigargin did not. Immunoblotting with an antibody against the carboxyl tail showed that ECA1p was associated mainly with the endoplasmic reticulum membranes isolated from Arabidopsis plants. The results support the model that ECA1 encodes an endoplasmic reticulum-type Ca2+ pump in Arabidopsis. The ability of ECA1p to restore growth of mutant pmr1 on medium containing Mn2+, and the formation of a Mn2+-dependent phosphoprotein suggested that ECA1p may also regulate Mn2+ homeostasis by pumping Mn2+ into endomembrane compartments of plants.
Resumo:
To study RAG2 gene regulation in vivo, we developed a blastocyst complementation method in which RAG2-deficient embryonic stem cells were transfected with genomic clones containing RAG2 and then assessed for their ability to generate lymphocytes. A RAG2 genomic clone that contained only the RAG2 promoter sequences rescued V(D)J recombination in RAG2-deficient pro-B cell lines, but did not rescue development of RAG2-deficient lymphocytes in vivo. However, inclusion of varying lengths of sequences 5′ of the RAG2 promoter generated constructs capable of rescuing only in vivo B cell development, as well as other constructs that rescued both B and T cell development. In particular, the 2-kb 5′ region starting just upstream of the RAG2 promoter, as well as the region from 2–7 kb 5′, could independently drive B cell development, but not efficient T cell development. Deletion of the 2-kb 5′ region from the murine germ line demonstrated that this region was not required for RAG expression sufficient to generate normal B or T cell numbers, implying redundancy among 5′ elements. We conclude that RAG2 expression in vivo requires elements beyond the core promoter, that such elements contribute to differential regulation in the B vs. T lineages, and that sequences sufficient to direct B cell expression are located in the promoter-proximal 5′ region.
The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin
Resumo:
Angiostatin, a potent naturally occurring inhibitor of angiogenesis and growth of tumor metastases, is generated by cancer-mediated proteolysis of plasminogen. Human prostate carcinoma cells (PC-3) release enzymatic activity that converts plasminogen to angiostatin. We have now identified two components released by PC-3 cells, urokinase (uPA) and free sulfhydryl donors (FSDs), that are sufficient for angiostatin generation. Furthermore, in a defined cell-free system, plasminogen activators [uPA, tissue-type plasminogen activator (tPA), or streptokinase], in combination with one of a series of FSDs (N-acetyl-l-cysteine, d-penicillamine, captopril, l-cysteine, or reduced glutathione] generate angiostatin from plasminogen. An essential role of plasmin catalytic activity for angiostatin generation was identified by using recombinant mutant plasminogens as substrates. The wild-type recombinant plasminogen was converted to angiostatin in the setting of uPA/FSD; however, a plasminogen activation site mutant and a catalytically inactive mutant failed to generate angiostatin. Cell-free derived angiostatin inhibited angiogenesis in vitro and in vivo and suppressed the growth of Lewis lung carcinoma metastases. These findings define a direct mechanism for cancer-cell-mediated angiostatin generation and permit large-scale production of bioactive angiostatin for investigation and potential therapeutic application.
Resumo:
RNA polymerase I (pol I) is a nuclear enzyme whose function is to transcribe the duplicated genes encoding the precursor of the three largest ribosomal RNAs. We report a cell-free system from broccoli (Brassica oleracea) inflorescence that supports promoter-dependent RNA pol I transcription in vitro. The transcription system was purified extensively by DEAE-Sepharose, Biorex 70, Sephacryl S300, and Mono Q chromatography. Activities required for pre-rRNA transcription copurified with the polymerase on all four columns, suggesting their association as a complex. Purified fractions programmed transcription initiation from the in vivo start site and utilized the same core promoter sequences required in vivo. The complex was not dissociated in 800 mM KCl and had a molecular mass of nearly 2 MDa based on gel filtration chromatography. The most highly purified fractions contain ≈30 polypeptides, two of which were identified immunologically as RNA polymerase subunits. These data suggest that the occurrence of a holoenzyme complex is probably not unique to the pol II system but may be a general feature of eukaryotic nuclear polymerases.
Resumo:
Deregulated production of nitric oxide (NO) has been implicated in the development of certain human diseases, including cancer. We sought to assess the damaging potential of NO produced under long-term conditions through the development of a suitable model cell culture system. In this study, we report that when murine macrophage-like RAW264.7 cells were exposed continuously to bacterial lipopolysaccharide (LPS) or mouse recombinant interferon-γ (IFN-γ) over periods of 21–23 days, they continued to grow, but with doubling times 2 to 4 times, respectively, longer than the doubling time of unstimulated cells. Stimulated cells produced NO at rates of 30 to 70 nmol per million cells per day throughout the stimulation period. Within 24 hr after removal of stimulant, cells resumed exponential growth. Simultaneous exposure to LPS and IFN-γ resulted in decreased cell number, which persisted for 2 days after removal of the stimulants. Exponential growth was attained only after an additional 4 days. Addition of N-methyl-l-arginine (NMA), an NO synthase inhibitor, to the medium inhibited NO production by 90% of all stimulated cells, partially reduced doubling time of cells stimulated with LPS or IFN-γ, and partially increased viability and growth rates in those exposed to both LPS and IFN-γ. However, when incubated with LPS and IFN-γ at low densities both in the presence and in the absence of NMA, cells grew at a rate slower than that of unstimulated cells, with no cell death, and they resumed exponential growth 24 hr after removal of stimulants. Results from cell density experiments suggest that macrophages are protected from intracellularly generated NO; much of the NO damaging activity occurred outside of the producer cells. Collectively, results presented in this study suggest that the type of cellular toxicity observed in macrophages is markedly influenced by rate of exposure to NO: at low rates of exposure, cells exhibit slower growth; at higher rates, cells begin to die; at even higher rates, cells undergo growth arrest or die. The ability of RAW264.7 cells to produce NO over many cell generations makes the cell line a useful system for the study of other aspects of cellular damage, including genotoxicity, resulting from exposure to NO under long-term conditions.