84 resultados para Insulin-Secreting Cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms by which insulin-like growth factors (IGFs) can be both mitogenic and differentiation-promoting in skeletal myoblasts are unclear because these two processes are believed to be mutually exclusive in this tissue. The phosphorylation state of the ubiquitous nuclear retinoblastoma protein (Rb) plays an important role in determining whether myoblasts proliferate or differentiate: Phosphorylated Rb promotes mitogenesis, whereas un- (or hypo-) phosphorylated Rb promotes cell cycle exit and differentiation. We hypothesized that IGFs might affect the fate of myoblasts by regulating the phosphorylation of Rb. Although long-term IGF treatment is known to stimulate differentiation, we find that IGFs act initially to inhibit differentiation and are exclusively mitogenic. These early effects of IGFs are associated with maintenance of Rb phosphorylation typical of proliferating cells; upregulation of the gene expression of cyclin-dependent kinase 4 and cyclin D1, components of a holoenzyme that plays a principal role in mediating Rb phosphorylation; and marked inhibition of the gene expression of myogenin, a member of the MyoD family of skeletal muscle-specific transcription factors that is essential in muscle differentiation. We also find that IGF-induced inhibition of differentiation occurs through a process that is independent of its mitogenic effects. We demonstrate, thus, that IGFs regulate Rb phosphorylation and cyclin D1 and cyclin-dependent kinase 4 gene expression; together with their biphasic effects on myogenin expression, these results suggest a mechanism by which IGFs are initially mitogenic and subsequently differentiation-promoting in skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amperometry at a carbon fiber microelectrode modified with a composite of ruthenium oxide and cyanoruthenate was used to monitor chemical secretions of single pancreatic beta cells from rats and humans. When the insulin secretagogues glucose, tolbutamide, and K+ were applied to the cell, a series of randomly occurring current spikes was observed. The current spikes were shown to be due to the detection of chemical substances secreted from the cell. Chromatography showed that the primary secreted substance detected by the electrode was insulin. The current spikes were strongly dependent on external Ca2+, had an average area that was independent of the stimulation method, and had an area distribution which corresponded to the distribution of vesicle sizes in beta cells. It was concluded that the spikes were due to the detection of concentration pulses of insulin secreted by exocytosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early neurogenesis progresses by an initial massive proliferation of neuroepithelial cells followed by a sequential differentiation of the various mature neural cell types. The regulation of these processes by growth factors is poorly understood. We intend to understand, in a well-defined biological system, the embryonic chicken retina, the role of the insulin-related growth factors in neurogenesis. We demonstrate the local presence of signaling elements together with a biological response to the factors. Neuroretina at days 6-8 of embryonic development (E6-E8) expressed proinsulin/insulin and insulin-like growth factor I (IGF-I) mRNAs as well as insulin receptor and IGF type I receptor mRNAs. In parallel with this in vivo gene expression, E5 cultured neuroretinas synthesized and released to the medium a metabolically radiolabeled immunoprecipitable insulin-related peptide. Furthermore, insulin-related immunoreactive material with a HPLC mobility close to that of proinsulin was found in the E6-E8 vitreous humor. Exogenous chicken IGF-I, human insulin, and human proinsulin added to E6 cultured neuroretinas showed relatively close potencies stimulating proliferation, as determined by [methyl-3H]thymidine incorporation, with a plateau reached at 10(-8) M. These factors also stimulated neuronal differentiation, indicated by the expression of the neuron-specific antigen G4. Thus, insulin-related growth factors, interestingly including proinsulin, are present in the developing chicken retina and appear to play an autocrine/paracrine stimulatory role in the progression of neurogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major targets for autoantibodies associated with the development of insulin-dependent diabetes mellitus (IDDM) include tryptic fragments with a molecular mass of 37 kDa and/or 40 kDa of a pancreatic islet cell antigen of unknown identity. The assay identifying autoantibodies against the 37/40-kDa antigen in human sera is based on the immunoprecipitation of 35S-labeled rat insulinoma cell proteins with sera from IDDM patients, followed by limited trypsin digestion of the immunoprecipitated material. To identify cDNA clones coding for the 37/40-kDa antigen, we have screened a cDNA expression library from rat insulinoma cells with a serum from an IDDM patient that precipitated the 37/40-kDa antigen in our assay. Among the cDNA products that reacted with the IDDM serum, we identified one cDNA clone whose open reading frame encodes a protein with a predicted mass of 105 kDa that we termed "ICA105" for 105-kDa islet cell antibody. The deduced amino acid sequence has high homology to a recently cloned putative tyrosine phosphatase IA-2 from human and mouse cDNA libraries. Translation of the cDNA in vitro results in a polypeptide with the expected molecular mass of 105 kDa. The evidence that ICA105 is indeed the precursor of the 37/40-kDa tryptic fragments is based on the following three results: (i) Sera from IDDM patients containing autoantibodies to the 37/40-kDa antigen precipitate the in vitro translated polypeptide, whereas sera from healthy subjects as well as sera from IDDM patients not reactive with the 37/40-kDa antigen do not precipitate the cDNA product. (ii) Immunoprecipitation of the in vitro translated protein with sera containing autoantibodies to the 37/40-kDa antigen followed by limited trypsin digestion of the precipitated proteins results in a 40-kDa polypeptide. (iii) The protein derived from our cDNA but not from an unrelated control cDNA clone can block immunoprecipitation of the 37/40-kDa antigen from a labeled rat insulinoma cell extract. The availability of the cloned 37/40-kDa antigen should facilitate the identification of individuals at risk of IDDM with increased accuracy. Furthermore, the identification of the 37/40-kDa antigen as the putative tyrosine phosphatase IA-2 is of relevance in elucidating the role of this antigen in the development of IDDM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Guinea pig eotaxin is a recently described member of the Cys-Cys family of chemokines and is involved in a guinea pig model of asthma. To determine whether eotaxin is a distinctive member of this family and to understand its physiologic role, we have cloned the mouse eotaxin gene and determined its structure and aspects of its biologic function. The sequence relationship between the mouse and guinea pig genes indicates that eotaxin is indeed a distinct member of the chemokine family. Moreover, murine eotaxin maps to a region of mouse chromosome 11 that encodes other Cys-Cys chemokines. In addition, recombinant murine eotaxin protein has direct chemoattractant properties for eosinophils. The eotaxin gene is widely (but not ubiquitously) expressed in normal mice and is strongly induced in cultured endothelial cells in response to interferon gamma. Eotaxin is also induced locally in response to the transplantation of interleukin 4-secreting tumor cells, indicating that it likely contributes to the eosinophil recruitment and antitumor effect of interleukin 4. Such responses suggest that eotaxin may be involved in multiple inflammatory states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incubating rat aortic smooth muscle cells with either platelet-derived growth factor BB (PDGF) or insulin-like growth factor I (IGF-I) increased the phosphorylation of PHAS-I, an inhibitor of the mRNA cap binding protein, eukaryotic initiation factor (eIF) 4E. Phosphorylation of PHAS-I promoted dissociation of the PHAS-I-eIF-4E complex, an effect that could partly explain the stimulation of protein synthesis by the two growth factors. Increasing cAMP with forskolin decreased PHAS-I phosphorylation and markedly increased the amount of eIF-4E bound to PHAS-I, effects consistent with an action of cAMP to inhibit protein synthesis. Both PDGF and IGF-I activated p70S6K, but only PDGF increased mitogen-activated protein kinase activity. Forskolin decreased by 50% the effect of PDGF on increasing p70S6K, and forskolin abolished the effect of IGF-I on the kinase. The effects of PDGF and IGF-I on increasing PHAS-I phosphorylation, on dissociating the PHAS-I-eIF-4E complex, and on increasing p70S6K were abolished by rapamycin. The results indicate that IGF-I and PDGF increase PHAS-I phosphorylation in smooth muscle cells by the same rapamycin-sensitive pathway that leads to activation of p70S6K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To compare effects of insulin-like growth factor I (IGF-I) and placebo treatment on lesions that resemble those seen during active demyelination in multiple sclerosis, we induced experimental autoimmune encephalomyelitis in Lewis rats with an emulsion containing guinea pig spinal cord and Freund's adjuvant. On day 12-13, pairs of rats with the same degree of weakness were given either IGF-I or placebo intravenously twice daily for 8 days. After 8 days of placebo or IGF-I (200 micrograms/day or 1 mg/day) treatment, the spinal cord lesions were studied by in situ hybridization and with immunocytochemical and morphological methods. IGF-I produced significant reductions in numbers and areas of demyelinating lesions. These lesions contained axons surrounded by regenerating myelin segments instead of demyelinated axons seen in the placebo-treated rats. Relative mRNA levels for myelin basic protein, proteolipid protein (PLP), and 2',3'-cyclic nucleotide 3'-phosphodiesterase in lesions of IGF-I-treated rats were significantly higher than they were in placebo-treated rats. PLP mRNA-containing oligodendroglia also were more numerous and relative PLP mRNA levels per oligodendrocyte were higher in lesions of IGF-I-treated rats. Finally, a significantly higher proportion of proliferating cells were oligodendroglia-like cells in lesions of IGF-I-treated rats. We think that IGF-I effects on oligodendrocytes, myelin protein synthesis, and myelin regeneration reduced lesion severity and promoted clinical recovery in this experimental autoimmune encephalomyelitis model. These IGF-I actions may also benefit patients with multiple sclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type 1 diabetes mellitus is caused by severe insulin deficiency secondary to the autoimmune destruction of pancreatic beta cells. Patients need to be controlled by periodic insulin injections to prevent the development of ketoacidosis, which can be fatal. Sustained, low-level expression of the rat insulin 1 gene from the liver of severely diabetic rats was achieved by in vivo administration of a recombinant retroviral vector. Ketoacidosis was prevented and the treated animals exhibited normoglycemia during a 24-hr fast, with no evidence of hypoglycemia. Histopathological examination of the liver in the treated animals showed no apparent abnormalities. Thus, the liver is an excellent target organ for ectopic expression of the insulin gene as a potential treatment modality for type 1 diabetes mellitus by gene therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenotype and antigenic specificity of cells secreting interleukin (IL) 4, IL-6, and interferon gamma was studied in mice during primary and secondary immune responses. T lymphocytes were the major source of interferon gamma, whereas non-B/non-T cells were the dominant source of IL-4 and IL-6 in the spleens of immunized animals. Cytokine-secreting non-B/non-T cells expressed surface receptors for IgE and/or IgG types II/III. Exposing these cells to antigen-specific IgE or IgG in vivo (or in vitro) "armed" them to release IL-4 and IL-6 upon subsequent antigenic challenge. These findings suggest that non-B/non-T cells may represent the "natural immunity" analogue of CD4+ T helper type 2 cells and participate in a positive feedback loop involved in the perpetuation of T helper type 2 cell responses.