161 resultados para Inhibiting Substance Promoter
Resumo:
Ets factors play a critical role in oncogenic Ras- and growth factor-mediated regulation of the proximal rat prolactin (rPRL) promoter in pituitary cells. The rPRL promoter contains two key functional Ets binding sites (EBS): a composite EBS/Pit-1 element located at –212 and an EBS that co-localizes with the basal transcription element (BTE, or A-site) located at –96. Oncogenic Ras exclusively signals to the –212 site, which we have named the Ras response element (RRE); whereas the response of multiple growth factors (FGFs, EGF, IGF, insulin and TRH) maps to both EBSs. Although Ets-1 and GA binding protein (GABP) have been implicated in the Ras and insulin responses, respectively, the precise identity of the pituitary Ets factors that specifically bind to the RRE and BTE sites remains unknown. In order to identify the Ets factor(s) present in GH4 and GH3 nuclear extracts (GH4NE and GH3NE) that bind to the EBSs contained in the RRE and BTE, we used EBS-RRE and BTE oligonucleotides in electrophoretic mobility shift assays (EMSAs), antibody supershift assays, western blot analysis of partially purified fractions and UV-crosslinking studies. EMSAs, using either the BTE or EBS-RRE probes, identified a specific protein–DNA complex, designated complex A, which contains an Ets factor as determined by oligonucleotide competition studies. Using western blot analysis of GH3 nuclear proteins that bind to heparin–Sepharose, we have shown that Ets-1 and GABP, which are MAP kinase substrates, co-purify with complex A, and supershift analysis with specific antisera revealed that complex A contains Ets-1, GABPα and GABPβ1. In addition, we show that recombinant full-length Ets-1 binds equivalently to BTE and EBS-RRE probes, while recombinant GABPα/β preferentially binds to the BTE probe. Furthermore, comparing the DNA binding of GH4NE containing both Ets-1 and GABP and HeLa nuclear extracts devoid of Ets-1 but containing GABP, we were able to show that the EBS-RRE preferentially binds Ets-1, while the BTE binds both GABP and Ets-1. Finally, UV-crosslinking experiments with radiolabeled EBS-RRE and BTE oligonucleotides showed that these probes specifically bind to a protein of ∼64 kDa, which is consistent with binding to Ets-1 (54 kDa) and/or the DNA binding subunit of GABP, GABPα (57 kDa). These studies show that endogenous, pituitary-derived GABP and Ets-1 bind to the BTE, whereas Ets-1 preferentially binds to the EBS-RRE. Taken together, these data provide important insights into the mechanisms by which the combination of distinct Ets members and EBSs transduce differential growth factor responses.
Resumo:
Caspases are key mediators in liver inflammation and apoptosis. In the present study we provide evidence that a nitric oxide (NO) derivative of ursodeoxycholic acid (UDCA), NCX-1000 ([2-(acetyloxy)benzoic acid 3-(nitrooxymethyl)phenyl ester]), protects against liver damage in murine models of autoimmune hepatitis induced by i.v. injection of Con A or a Fas agonistic antibody, Jo2. Con A administration causes CD4+ T lymphocytes to accumulate in the liver and up-regulates FasL expression, resulting in FasL-mediated cytotoxicity. Cotreating mice with NCX-1000, but not with UDCA, protected against liver damage induced by Con A and Jo2, inhibited IL-1β, IL-18, and IFN-γ release and caspase 3, 8, and 9 activation. Studies on HepG2 cells demonstrated that NCX-1000, but not UDCA, directly prevented multiple caspase activation induced by Jo2. Incubating HepG2 cells with NCX-1000 resulted in intracellular NO formation and a DTT-reversible inhibition of proapoptotic caspases, suggesting that cysteine S-nitrosylation was the main mechanism responsible for caspase inhibition. Collectively, these data suggest that NCX-1000 protects against T helper 1-mediated liver injury by inhibiting both the proapoptotic and the proinflammatory branches of the caspase superfamily.
Resumo:
Heterocyst differentiation in the filamentous cyanobacterium Anabaena PCC 7120 requires a functional hetR gene. Increased expression of the hetR gene is seen in developing and mature heterocysts in response to fixed nitrogen limitation. We mapped four likely transcriptional start sites for hetR and identified a specific transcript that is positively autoregulated. By using the copper-responsive petE promoter from Anabaena PCC 7120 to drive hetR expression, we show that ectopic expression of hetR increases heterocyst frequency and induces heterocyst differentiation under fully repressing conditions. Coexpression of a reporter gene shows that expression from the petE promoter is smoothly induced depending on the amount of copper supplied. In the heterocyst pattern mutant PatA, where terminally positioned heterocysts are formed almost exclusively, expression of the petE∷hetR fusion does not result in the formation of intercalary heterocysts. These results suggest that although the intracellular concentration of HetR has to be elevated for the differentiation decision, PatA plays a role as well. This role may be in the form of posttranslational modification of HetR, because PatA is a member of the response regulator family of proteins.
Resumo:
Cyclin D1 is expressed at abnormally high levels in many cancers and has been specifically implicated in the development of breast cancer. In this report we have extensively analyzed the cyclin D1 promoter in a variety of cancer cell lines that overexpress the protein and identified two critical regulatory elements (CREs), a previously identified CRE at –52 and a novel site at –30. In vivo footprinting experiments demonstrated factors binding at both sites. We have used a novel DNA-binding ligand, GL020924, to target the site at –30 (–30–21) of the cyclin D1 promoter in MCF7 breast cancer cells. A binding site for this novel molecule was constructed by mutating 2 bp of the wild-type cyclin D1 promoter at the –30–21 site. Treatment with GL020924 specifically inhibited expression of the targeted cyclin D1 promoter construct in MCF7 cells in a concentration-dependent manner, thus validating the –30–21 site as a target for minor groove-binding ligands. In addition, this result validates our approach to regulating the expression of genes implicated in disease by targeting small DNA-binding ligands to key regulatory elements in the promoters of those genes.
Resumo:
Human c-sis/PDGF-B proto-oncogene has been shown to be overexpressed in a large percentage of human tumor cells establishing a growth-promoting, autocrine growth circuit. Triplex forming oligonucleotides (TFOs) can recognize and bind sequences in duplex DNA, and have received considerable attention because of their potential for targeting specific genomic sites. The c-sis/PDGF-B promoter contains a unique homopurine/homopyrimidine sequence (SIS proximal element, SPE), which is crucial for binding nuclear factors that provoke transcription. In order to develop specific transcriptional inhibitors of the human c-sis/PDGF-B proto-oncogene, 20 potential TFOs targeting part or all of the SPE were screened by gel mobility analysis. DNase I footprinting shows that the TFOs we designed can form a sequence-specific triplex with the target. Protein binding assays demonstrate that triplex formation inhibits nuclear factors binding the c-sis/PDGF-B promoter. Both transient and stable transfection experiments demonstrate that the transcriptional activity of the promoter is considerably inhibited by the TFOs. We propose that TFOs represent a therapeutic potential to specifically diminish the expression of c-sis/PDGF-B proto-oncogene in various pathologic settings where constitutive expression of this gene has been observed.
Resumo:
Signaling events controlled by calcineurin promote cardiac hypertrophy, but the degree to which such pathways are required to transduce the effects of various hypertrophic stimuli remains uncertain. In particular, the administration of immunosuppressive drugs that inhibit calcineurin has inconsistent effects in blocking cardiac hypertrophy in various animal models. As an alternative approach to inhibiting calcineurin in the hearts of intact animals, transgenic mice were engineered to overexpress a human cDNA encoding the calcineurin-binding protein, myocyte-enriched calcineurin-interacting protein-1 (hMCIP1) under control of the cardiac-specific, α-myosin heavy chain promoter (α-MHC). In unstressed mice, forced expression of hMCIP1 resulted in a 5–10% decline in cardiac mass relative to wild-type littermates, but otherwise produced no apparent structural or functional abnormalities. However, cardiac-specific expression of hMCIP1 inhibited cardiac hypertrophy, reinduction of fetal gene expression, and progression to dilated cardiomyopathy that otherwise result from expression of a constitutively active form of calcineurin. Expression of the hMCIP1 transgene also inhibited hypertrophic responses to β-adrenergic receptor stimulation or exercise training. These results demonstrate that levels of hMCIP1 producing no apparent deleterious effects in cells of the normal heart are sufficient to inhibit several forms of cardiac hypertrophy, and suggest an important role for calcineurin signaling in diverse forms of cardiac hypertrophy. The future development of measures to increase expression or activity of MCIP proteins selectively within the heart may have clinical value for prevention of heart failure.
Resumo:
Recent evidence suggests that the Myc and Mad1 proteins are implicated in the regulation of the gene encoding the human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase. We have analyzed the in vivo interaction between endogenous c-Myc and Mad1 proteins and the hTERT promoter in HL60 cells with the use of the chromatin immunoprecipitation assay. The E-boxes at the hTERT proximal promoter were occupied in vivo by c-Myc in exponentially proliferating HL60 cells but not in cells induced to differentiate by DMSO. In contrast, Mad1 protein was induced and bound to the hTERT promoter in differentiated HL60 cells. Concomitantly, the acetylation of the histones at the promoter was significantly reduced. These data suggest that the reciprocal E-box occupancy by c-Myc and Mad1 is responsible for activation and repression of the hTERT gene in proliferating and differentiated HL60 cells, respectively. Furthermore, the histone deacetylase inhibitor trichostatin A inhibited deacetylation of histones at the hTERT promoter and attenuated the repression of hTERT transcription during HL60 cell differentiation. In addition, trichostatin A treatment activated hTERT transcription in resting human lymphocytes and fibroblasts. Taken together, these results indicate that acetylation/deacetylation of histones is operative in the regulation of hTERT expression.
Resumo:
Substance P (SP) is a potent modulator of neuroimmunoregulation. We recently reported that human immune cells express SP and its receptor. We have now investigated the possible role that SP and its receptor plays in HIV infection of human mononuclear phagocytes. SP enhanced HIV replication in human blood-isolated mononuclear phagocytes, whereas the nonpeptide SP antagonist (CP-96,345) potently inhibited HIV infectivity of these cells in a concentration-dependent fashion. CP-96,345 prevented the formation of typical giant syncytia induced by HIV Bal strain replication in these cells. This inhibitory effect of CP-96,345 was because of the antagonism of neurokinin-1 receptor, a primary SP receptor. Both CP-96,345 and anti-SP antibody inhibited SP-enhanced HIV replication in monocyte-derived macrophages (MDM). Among HIV strains tested (both prototype and primary isolates), only the R5 strains (Bal, ADA, BL-6, and CSF-6) that use the CCR5 coreceptor for entry into MDM were significantly inhibited by CP-96,345; in contrast, the X4 strain (UG024), which uses CXCR4 as its coreceptor, was not inhibited. In addition, the M-tropic ADA (CCR5-dependent)-pseudotyped HIV infection of MDM was markedly inhibited by CP-96,345, whereas murine leukemia virus-pseudotyped HIV was not affected, indicating that the major effect of CP-96,345 is regulated by Env-determined early events in HIV infection of MDM. CP-96,345 significantly down-regulated CCR5 expression in MDM at both protein and mRNA levels. Thus, SP–neurokinin-1 receptor interaction may play an important role in the regulation of CCR5 expression in MDM, affecting the R5 HIV strain infection of MDM.
Resumo:
Kaposi's sarcoma-associated herpesvirus (KSHV) is strongly linked to Kaposi's sarcoma, primary effusion lymphomas, and a subset of multicentric Castleman's disease. The mechanism by which this virus establishes latency and reactivation is unknown. KSHV Lyta (lytic transactivator, also named KSHV/Rta), mainly encoded by the ORF 50 gene, is a lytic switch gene for viral reactivation from latency, inasmuch as it is both essential and sufficient to drive the entire viral lytic cycle. Here we show that the Lyta promoter region was heavily methylated in latently infected cells. Treatment of primary effusion lymphoma-delivered cell lines with tetradecanoylphorbol acetate caused demethylation of the Lyta promoter and induced KSHV lytic phase in vitro. Methylation cassette assay shows demethylation of the Lyta promoter region was essential for the expression of Lyta. In vivo, biopsy samples obtained from patients with KSHV-related diseases show the most demethylation in the Lyta promoter region, whereas samples from a latently infected KSHV carrier remained in a methylated status. These results suggest a relationship among a demethylation status in the Lyta promoter, the reactivation of KSHV, and the development of KSHV-associated diseases.
Resumo:
Typical general transcription factors, such as TATA binding protein and TFII B, have not yet been identified in any member of the Trypanosomatidae family of parasitic protozoa. Interestingly, mRNA coding genes do not appear to have discrete transcriptional start sites, although in most cases they require an RNA polymerase that has the biochemical properties of eukaryotic RNA polymerase II. A discrete transcription initiation site may not be necessary for mRNA synthesis since the sequences upstream of each transcribed coding region are trimmed from the nascent transcript when a short m7G-capped RNA is added during mRNA maturation. This short 39 nt m7G-capped RNA, the spliced leader (SL) sequence, is expressed as an ∼100 nt long RNA from a set of reiterated, though independently transcribed, genes in the trypanosome genome. Punctuation of the 5′ end of mRNAs by a m7G cap-containing spliced leader is a developing theme in the lower eukaryotic world; organisms as diverse as Euglena and nematode worms, including Caenorhabditis elegans, utilize SL RNA in their mRNA maturation programs. Towards understanding the coordination of SL RNA and mRNA expression in trypanosomes, we have begun by characterizing SL RNA gene expression in the model trypanosome Leptomonas seymouri. Using a homologous in vitro transcription system, we demonstrate in this study that the SL RNA is transcribed by RNA polymerase II. During SL RNA transcription, accurate initiation is determined by an initiator element with a loose consensus of CYAC/AYR(+1). This element, as well as two additional basal promoter elements, is divergent in sequence from the basal transcription elements seen in other eukaryotic gene promoters. We show here that the in vitro transcription extract contains a binding activity that is specific for the initiator element and thus may participate in recruiting RNA polymerase II to the SL RNA gene promoter.
Resumo:
Transformation of normal cloned rat embryo fibroblast (CREF) cells with cellular oncogenes results in acquisition of anchorage-independent growth and oncogenic potential in nude mice. These cellular changes correlate with an induction in the expression of a cancer progression-promoting gene, progression elevated gene-3 (PEG-3). To define the mechanism of activation of PEG-3 as a function of transformation by the Ha-ras and v-raf oncogenes, evaluations of the signaling and transcriptional regulation of the ~2.0 kb promoter region of the PEG-3 gene, PEG-Prom, was undertaken. The full-length and various mutated regions of the PEG-Prom were linked to a luciferase reporter construct and tested for promoter activity in CREF and oncogene-transformed CREF cells. An analysis was also performed using CREF cells doubly transformed with Ha-ras and the Ha-ras specific suppressor gene Krev-1, which inhibits the transformed phenotype in vitro. These assays document an association between expression of the transcription regulator PEA3 and PEG-3. The levels of PEA3 and PEG-3 RNA and proteins are elevated in the oncogenically transformed CREF cells, and reduced in transformation and tumorigenic suppressed Ha-ras/Krev-1 doubly transformed CREF cells. Enhanced tumorigenic behavior, PEG-3 promoter function and PEG-3 expression in Ha-ras transformed cells were all dependent upon increased activity within the mitogen-activated protein kinase (MAPK) pathway. Electrophoretic mobility shift assays and DNase I footprinting experiments indicate that PEA3 binds to sites within the PEG-Prom in transformed rodent cells in an area adjacent to the TATA box in a MAPK-dependent fashion. These findings demonstrate an association between Ha-ras and v-raf transformation of CREF cells with elevated PEA3 and PEG-3 expression, and they implicate MAPK signaling via PEA3 as a signaling cascade involved in activation of the PEG-Prom.
Resumo:
The cyclin-dependent kinase inhibitor p21(WAF1/CIP1) inhibits proliferation both in vitro and in vivo, and overexpression of p21 in normal and tumor cell lines results in cell cycle arrest. In contrast, ectopic expression of Myc alleviates G1 cell cycle arrest. Recent studies showed that Myc can repress p21 transcription, thereby overriding a p21-mediated cell cycle checkpoint. We found that activation of a Myc-estrogen receptor fusion protein by 4-hydroxytamoxifen in mouse cells resulted in suppression of endogenous p21 transcription. This effect was observed in the absence of de novo protein synthesis and was independent of histone deacetylase activity. In transient transfection studies, Myc effectively repressed p21 promoter constructs containing only 119 bp of sequence upstream of the transcription start site. This region contains multiple Sp1-binding sites and a potential initiator element, but no canonical Myc DNA-binding sites. Deletion of the potential initiator element does not affect repression of the p21 promoter by c-Myc. Coimmunoprecipitation and glutathione S-transferase pull-down experiments demonstrate that c-Myc may form complexes with Sp1/Sp3. We found that the central region of c-Myc interacts with the zinc finger domain of Sp1. Because Sp1 is required for p21 transcription, it is possible that Myc may down-regulate p21 transcription, at least in part, by sequestering Sp1. Repression of the p21 promoter may contribute to the ability of c-Myc to promote cell proliferation.
Resumo:
The yeast Candida albicans has a distinguishing feature, dimorphism, which is the ability to switch between two morphological forms: a budding yeast form and a multicellular invasive filamentous form. This ability has been postulated to contribute to the virulence of this organism. Studies on the morphological transition from a filamentous to a budding yeast form in C. albicans have shown that this organism excretes an autoregulatory substance into the culture medium. This substance was extracted and purified by normal-phase and reversed-phase HPLC. The autoregulatory substance was structurally identified as 3,7,11-trimethyl-2,6,10-dodecatrienoate (farnesoic acid) by NMR and mass spectrometry. Growth experiments suggest that this substance does not inhibit yeast cell growth but inhibits filamentous growth. These findings have implications for developmental signaling by the fungus and might have medicinal value in the development of antifungal therapies.
Resumo:
We have shown that the DNA demethylation complex isolated from chicken embryos has a G⋅T mismatch DNA glycosylase that also possesses 5-methylcytosine DNA glycosylase (5-MCDG) activity. Herein we show that human embryonic kidney cells stably transfected with 5-MCDG cDNA linked to a cytomegalovirus promoter overexpress 5-MCDG. A 15- to 20-fold overexpression of 5-MCDG results in the specific demethylation of a stably integrated ecdysone-retinoic acid responsive enhancer-promoter linked to a β-galactosidase reporter gene. Demethylation occurs in the absence of the ligand ponasterone A (an analogue of ecdysone). The state of methylation of the transgene was investigated by Southern blot analysis and by the bisulfite genomic sequencing reaction. Demethylation occurs downstream of the hormone response elements. No genome-wide demethylation was observed. The expression of an inactive mutant of 5-MCDG or the empty vector does not elicit any demethylation of the promoter-enhancer of the reporter gene. An increase in 5-MCDG activity does not influence the activity of DNA methyltransferase(s) when tested in vitro with a hemimethylated substrate. There is no change in the transgene copy number during selection of the clones with antibiotics. Immunoprecipitation combined with Western blot analysis showed that an antibody directed against 5-MCDG precipitates a complex containing the retinoid X receptor α. The association between retinoid receptor and 5-MCDG is not ligand dependent. These results suggest that a complex of the hormone receptor with 5-MCDG may target demethylation of the transgene in this system.
Resumo:
TFIIH is a multifunctional RNA polymerase II general initiation factor that includes two DNA helicases encoded by the Xeroderma pigmentosum complementation group B (XPB) and D (XPD) genes and a cyclin-dependent protein kinase encoded by the CDK7 gene. Previous studies have shown that the TFIIH XPB DNA helicase plays critical roles not only in transcription initiation, where it catalyzes ATP-dependent formation of the open complex, but also in efficient promoter escape, where it suppresses arrest of very early RNA polymerase II elongation intermediates. In this report, we present evidence that ATP-dependent TFIIH action in transcription initiation and promoter escape requires distinct regions of the DNA template; these regions are well separated from the promoter region unwound by the XPB DNA helicase and extend, respectively, ≈23–39 and ≈39–50 bp downstream from the transcriptional start site. Taken together, our findings bring to light a role for promoter DNA in TFIIH action and are consistent with the model that TFIIH translocates along promoter DNA ahead of the RNA polymerase II elongation complex until polymerase has escaped the promoter.