119 resultados para Human leukocyte antigen


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that anti-IgM-induced cell death in a human B lymphoma cell line, B104, is associated with early intracellular acidification and cell shrinkage. In contrast, another human B cell lymphoma line, Daudi, less susceptible to B cell antigen receptor-mediated cell death, responded to anti-IgM with an early increase in intracellular pH (pHi). The anti-IgM-induced changes of pHi were associated with different levels of activation of the Na+/H+ exchanger isoform 1 (NHE1) as judged by its phosphorylation status. Prevention of anti-IgM-induced cell death in B104 cells by the calcineurin phosphatase inhibitor, cyclosporin A, abrogated both intracellular acidification and cell shrinkage and was associated with an increase in the phosphorylation level of NHE1 within the first 60 min of stimulation. This indicates a key role for calcineurin in regulating pHi and cell viability. The potential role of pHi in cell viability was confirmed in Daudi cells treated with an Na+/H+ exchanger inhibitor 5-(N,N-hexamethylene)amiloride. These observations indicate that the outcome of the anti-IgM treatment depends on NHE1-controlled pHi. We suggest that inactivation of the NHE1 in anti-IgM-stimulated cells results in intracellular acidification and subsequently triggers or amplifies cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Langerhans cells are a subset of dendritic cells (DCs) found in the human epidermis with unique morphological and molecular properties that enable their function as “sentinels” of the immune system. DCs are pivotal in the initiation and regulation of primary MHC class I restricted T lymphocyte immune responses and are able to present both endogenous and exogenous antigen onto class I molecules. Here, we study the MHC class I presentation pathway following activation of immature, CD34-derived human Langerhans cells by lipopolysaccharide (LPS). LPS induces an increase in all components of the MHC class I pathway including the transporter for antigen presentation (TAP), tapasin and ERp57, and the immunoproteasome subunits LMP2 and LMP7. Moreover, in CD34-derived Langerhans cells, the rapid increase in expression of MHC class I molecules seen at the cell surface following LPS activation is because of mobilization of MHC class I molecules from HLA-DM positive endosomal compartments, a pathway not seen in monocyte-derived DCs. Mobilization of class I from this compartment is primaquine sensitive and brefeldin A insensitive. These data demonstrate the regulation of the class I pathway in concert with the maturation of the CD34-derived Langerhans cells and suggest potential sites for antigen loading of class I proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antigens of pathogenic microbes that mimic autoantigens are thought to be responsible for the activation of autoreactive T cells. Viral infections have been associated with the development of the neuroendocrine autoimmune diseases type 1 diabetes and stiff-man syndrome, but the mechanism is unknown. These diseases share glutamic acid decarboxylase (GAD65) as a major autoantigen. We screened synthetic peptide libraries dedicated to bind to HLA-DR3, which predisposes to both diseases, using clonal CD4+ T cells reactive to GAD65 isolated from a prediabetic stiff-man syndrome patient. Here we show that these GAD65-specific T cells crossreact with a peptide of the human cytomegalovirus (hCMV) major DNA-binding protein. This peptide was identified after database searching with a recognition pattern that had been deduced from the library studies. Furthermore, we showed that hCMV-derived epitope can be naturally processed by dendritic cells and recognized by GAD65 reactive T cells. Thus, hCMV may be involved in the loss of T cell tolerance to autoantigen GAD65 by a mechanism of molecular mimicry leading to autoimmunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a recently identified member of the tumor necrosis factor cytokine superfamily. TRAIL has been shown to induce apoptosis in various tumor cell lines, whereas most primary cells seem to be resistant. These observations have raised considerable interest in the use of TRAIL in tumor therapy. Yet little is known about the physiological function of TRAIL. This is particularly the case in the immune system, where TRAIL has been suggested by some to be involved in target cell killing and lymphocyte death. We have developed a panel of mAbs and soluble proteins to address the role of TRAIL in lymphocyte development. These studies demonstrate activation-induced sensitization of thymocytes to TRAIL-mediated apoptosis and expression of the apoptosis-inducing TRAIL receptors. However, with the use of several model systems, our subsequent experiments rule out the possibility that TRAIL plays a major role in antigen-induced deletion of thymocytes. In contrast to thymocytes, there is no up-regulation of TRAIL receptors in peripheral T cells on activation, which remain resistant to TRAIL. Thus, susceptibility to TRAIL-induced apoptosis is controlled differently by central and peripheral T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extensive, highly diversified multigene family of novel immune-type receptor (nitr) genes has been defined in Danio rerio (zebrafish). The genes are predicted to encode type I transmembrane glycoproteins consisting of extracellular variable (V) and V-like C2 (V/C2) domains, a transmembrane region and a cytoplasmic tail. All of the genes examined encode immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic tail. Radiation hybrid panel mapping and analysis of a deletion mutant line (b240) indicate that a minimum of ≈40 nitr genes are contiguous in the genome and span ≈0.6 Mb near the top of zebrafish linkage group 7. One flanking region of the nitr gene complex shares conserved synteny with a region of mouse chromosome 7, which shares conserved synteny with human 19q13.3-q13.4 that encodes the leukocyte receptor cluster. Antibody-induced crosslinking of Nitrs that have been introduced into a human natural killer cell line inhibits the phosphorylation of mitogen-activated protein kinase that is triggered by natural killer-sensitive tumor target cells. Nitrs likely represent intermediates in the evolution of the leukocyte receptor cluster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes a tumor-associated antigen, termed CML66, initially cloned from a chronic myelogenous leukemia (CML) cDNA expression library. CML66 encodes a 583-aa protein with a molecular mass of 66 kDa and no significant homology to other known genes. CML66 gene is localized to human chromosome 8q23, but the function of this gene is unknown. CML66 is expressed in leukemias and a variety of solid tumor cell lines. When examined by Northern blot, expression in normal tissues was restricted to testis and heart, and no expression was found in hematopoietic tissues. When examined by quantitative reverse transcription–PCR, expression in CML cells was 1.5-fold higher than in normal peripheral blood mononuclear cells. The presence of CML66-specific antibody in patient serum was confirmed by Western blot and the development of high titer IgG antibody specific for CML66 correlated with immune induced remission of CML in a patient who received infusion of normal donor lymphocytes for treatment of relapse. CML66 antibody also was found in sera from 18–38% of patients with lung cancer, melanoma, and prostate cancer. These findings suggest that CML66 may be immunogenic in a wide variety of malignancies and may be a target for antigen-specific immunotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A small percentage of human T lymphocytes, predominantly CD8+ T cells, express receptors for HLA class 1 molecules of natural killer type (NK-R) that are inhibitory for T-cell antigen receptor (TCR)-mediated functions. In the present study, it is demonstrated that the various NK-R molecules typically expressed by NK cells are also expressed on periheral blood T lymphocytes. These CD3+ NK-R+ cells have a cell surface phenotype typical of memory cells as indicated by the expression of CD45RO and CD29 and by the lack of CD28 and CD45RA. Furthermore, by the combined use of anti-TCR V beta-specific antibodies and a semiquantitative polymerase chain reaction assay, the TCR repertoire in this CD3+ NK-R+ cell subset was found to be skewed; in fact, one or two V beta families were largely represented, and most of the other V beta s were barely detected. In addition, analysis of recombinant clones of the largely represented V beta families demonstrated that these V beta s were oligoclonally or monoclonally expanded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When the human prostate cancer cell line, LNCaP 104-S, the growth of which is stimulated by physiological levels of androgen, is cultured in androgen-depleted medium for > 100 passages, the cells, now called LNCaP 104-R2, are proliferatively repressed by low concentrations of androgens. LNCaP 104-R2 cells formed tumors in castrated male athymic nude mice. Testosterone propionate (TP) treatment prevented LNCaP 104-R2 tumor growth and caused regression of established tumors in these mice. Such a tumor-suppressive effect was not observed with tumors derived from LNCaP 104-S cells or androgen receptor-negative human prostate cancer PC-3 cells. 5 alpha-Dihydrotestosterone, but not 5 beta-dihydrotestosterone, 17 beta-estradiol, or medroxyprogesterone acetate, also inhibited LNCaP 104-R2 tumor growth. Removal of TP or implantation of finasteride, a 5 alpha-reductase inhibitor, in nude mice bearing TP implants resulted in the regrowth of LNCaP 104-R2 tumors. Within 1 week after TP implantation, LNCaP 104-R2 tumors exhibited massive necrosis with severe hemorrhage. Three weeks later, these tumors showed fibrosis with infiltration of chronic inflammatory cells and scattered carcinoma cells exhibiting degeneration. TP treatment of mice with LNCaP 104-R2 tumors reduced tumor androgen receptor and c-myc mRNA levels but increased prostate-specific antigen in serum- and prostate-specific antigen mRNA in tumors. Although androgen ablation has been the standard treatment for metastatic prostate cancer for > 50 years, our study shows that androgen supplementation therapy may be beneficial for treatment of certain types of human prostate cancer and that the use of 5 alpha-reductase inhibitors, such as finasteride or anti-androgens, in the general treatment of metastatic prostate cancer may require careful assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoclastogenesis is a complex process that is facilitated by bone marrow stromal cells (SCs). To determine if SCs are an absolute requirement for the differentiation of human hematopoietic precursors into fully mature, osteoclasts (OCs), CD34+ cells were mobilized into the peripheral circulation with granulocyte colony-stimulating factor, harvested by leukapheresis, and purified by magnetic-activated cell sorting. This procedure yields a population of CD34+ cells that does not contain SC precursors, as assessed by the lack of expression of the SC antigen Stro-1, and that differentiates only into hematopoietic cells. We found that CD34+, Stro-1- cells cultured with a combination of granulocyte/macrophage colony-stimulating factor, interleukin 1, and interleukin 3 generated cells that fulfill current criteria for the characterization of OCs, including multinucleation, presence of tartrate-resistant acid phosphatase, and expression of the calcitonin and vitronectin receptors and of pp60c-src tyrosine kinase. These OCs also expressed mRNA for the noninserted isoform of the calcitonin receptor and excavated characteristic resorption pits in devitalized bone slices. These data demonstrate that accessory SCs are not essential for human osteoclastogenesis and that granulocyte colony-stimulating factor treatment mobilizes OC precursors into the peripheral circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two genetic events contribute to the development of endemic Burkitt lymphoma (BL) infection of B lymphocytes with Epstein-Barr virus (EBV) and the activation of the protooncogene c-myc through chromosomal translocation. The viral genes EBV nuclear antigen 2 (EBNA2) and latent membrane protein 1 (LMP1) are essential for transformation of primary human B cells by EBV in vitro; however, these genes are not expressed in BL cells in vivo. To address the question whether c-myc activation might abrogate the requirement of the EBNA2 and LMP1 function, we have introduced an activated c-myc gene into an EBV-transformed cell line in which EBNA2 was rendered estrogen-dependent through fusion with the hormone binding domain of the estrogen receptor. The c-myc gene was placed under the control of regulatory elements of the immunoglobulin kappa locus composed a matrix attachment region, the intron enhancer, and the 3' enhancer. We show here that transfection of a c-myc expression plasmid followed by selection for high MYC expression is capable of inducing continuous proliferation of these cells in the absence of functional EBNA2 and LMP1. c-myc-induced hormone-independent proliferation was associated with a dramatic change in the growth behavior as well as cell surface marker expression of these cells. The typical lymphoblastoid morphology and phenotype of EBV-transformed cells completely changed into that of BL cells in vivo. We conclude that the phenotype of BL cells reflects the expression pattern of viral and cellular genes rather than its germinal center origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that beta 2 integrins are crucial for leukocyte cell-cell and cell-matrix interactions, and accumulating evidence now suggests that integrins serve not only as a structural link but also as a signal-transducing unit that controls adhesion-induced changes in cell functions. In the present study, we plated human neutrophils on surface-bound anti-beta 2 (CD18) antibodies and found that the small GTP-binding protein p21ras is activated by beta 2 integrins. Pretreatment of the cells with genistein, a tyrosine kinase inhibitor, led to a complete block of p21ras activation, an effect that was not achieved with either U73122, which abolishes the beta 2 integrin-induced Ca2+ signal, or wortmannin, which totally inhibits the phosphatidylinositol 3-kinase activity. Western blot analysis revealed that antibody-induced engagement of beta 2 integrins causes tyrosine phosphorylation of several proteins in the cells. One of these tyrosine-phosphorylated proteins had an apparent molecular mass of 95 kDa and was identified as the protooncogene product Vav, a p21ras guanine nucleotide exchange factor that is specifically expressed in cells of hematopoietic lineage. A role for Vav in the activation of p21ras is supported by the observations that antibody-induced engagement of beta 2 integrins causes an association of Vav with p21ras and that the effect of genistein on p21ras activation coincided with its ability to inhibit both the tyrosine phosphorylation of Vav and the Vav-p21ras association. Taken together, these results indicate that antibody-induced engagement of beta 2 integrins on neutrophils triggers tyrosine phosphorylation of Vav and, possibly through its association, a downstream activation of p21ras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a need for more effective therapy for chronic virus infections. A principle natural mechanism for elimination of virus-infected host cells is activation of viral antigen-specific cytotoxic T lymphocytes (CTL). In an effort to develop methods of inducing virus-specific CTL responses that might be utilized in therapy of virus infections, we have investigated the effect of B7, a costimulatory factor for T-cell activation. In this study we show that delivery of genes encoding human B7-1 and a viral antigen in the same recombinant viral vector to cells of mice induces a greater viral antigen-specific CTL response than does similar delivery of the viral antigen gene alone. Two recombinant adenovirus vectors were constructed with the foreign genes inserted in the early region 3. One of them (Ad1312) directed expression of the surface antigen gene of hepatitis B virus (HBS); the other (Ad1310) directed coexpression of HBS and human B7-1 (CD80) by means of an internal ribosomal entry site placed between the two coding sequences. When inoculated into BALB/c mice, both vectors induced a viral surface antigen-specific CTL response. The response induced by Ad1310 was stronger than that by Adl312 as measured by a chromium release assay for CTL activity and limiting dilution analysis for CTL precursor frequency, indicating that the B7-1 gene co-delivered with the HBS gene had an enhancing effect on the CTL response against surface antigen. Ad1310 also induced a higher titer of antibody against surface antigen than did Ad1312. This result suggests that expression of a costimulatory protein and a viral antigen in the same cells in vivo induces stronger immune responses than expression of the antigen alone. This could be a novel strategy for development of both preventive and therapeutic vaccines against infectious agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe molecular and clinical findings in an immunocompetent patient with an oligoastrocytoma and the concomitant presence of the human papovavirus, JC virus (JCV), which is the etiologic agent of the subacute, debilitating demyelinating disease, progressive multifocal leukoencephalopathy. Histologic review revealed a glial neoplasm consisting primarily of a moderately cellular oligodendroglioma with distinct areas of a fibrillary astrocytoma. Immunohistochemical analysis revealed nuclear staining of tumor cells with antibodies against the viral oncoprotein [tumor antigen (T antigen)], the proliferation marker (Ki67), and the cellular proliferation regulator (p53). Using primers specific to the JCV control region, PCR yielded amplified DNA that was identical to the control region of the Mad-4 strain of the virus. PCR analysis demonstrated the presence of the genome for the viral oncoprotein, T antigen, and results from primer extension studies revealed synthesis of the viral early RNA for T antigen in the tumor tissues. The presence of viral T antigen in the tumor tissue was further demonstrated by immunoblot assay. To our knowledge, this is the first report of the presence of JCV DNA, RNA, and T antigen in tissue in which viral T antigen is localized to tumor cell nuclei and suggests the possible association of JCV with some glial neoplasms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Replication factor C (RFC, also called Activator I) is part of the processive eukaryotic DNA polymerase holoenzymes. The processive elongation of DNA chains requires that DNA polymerases are tethered to template DNA at primer ends. In eukaryotes the ring-shaped homotrimeric protein, proliferating cell nuclear antigen (PCNA), ensures tight template-polymerase interaction by encircling the DNA strand. Proliferating cell nuclear antigen is loaded onto DNA through the action of RFC in an ATP-dependent reaction. Human RFC is a protein complex consisting of five distinct subunits that migrate through SDS/polyacrylamide gels as protein bands of 140, 40, 38, 37, and 36 kDa. All five genes encoding the RFC subunits have been cloned and sequenced. A functionally identical RFC complex has been isolated from Saccharomyces cerevisiae and the deduced amino acid sequences among the corresponding human and yeast subunits are homologous. Here we report the expression of the five cloned human genes using an in vitro coupled transcription/translation system and show that the gene products form a complex resembling native RFC that is active in supporting an RFC-dependent replication reaction. Studies on the interactions between the five subunits suggest a cooperative mechanism in the assembly of the RFC complex. A three-subunit core complex, consisting of p36, p37, and p40, was identified and evidence is presented that p38 is essential for the interaction between this core complex and the large p140 subunit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent progress in the structural identification of human melanoma antigens recognized by autologous cytotoxic T cells has led to the recognition of a new melanocyte differentiation antigen, Melan-A(MART-1). To determine the properties of the Melan-A gene product, Melan-A recombinant protein was produced in Escherichia coli and used to generate mouse monoclonal antibodies (mAbs). Two prototype mAbs, A103 and A355, were selected for detailed study. Immunoblotting results with A103 showed a 20-22-kDa doublet In Melan-A mRNA positive melanoma cell lines and no reactivity with Melan-A mRNA-negative cell lines. A355, in addition to the 20-22-kDa doublet, recognized several other protein species in Melan-A mRNA-positive cell lines. Immunocytochemical assays on cultured melanoma cells showed specific and uniform cytoplasmic staining in Melan-A mRNA-positive cell lines. Immunohistochemical analysis of normal human tissues with both mAbs showed staining of adult melanocytes and no reactivity with the other normal tissues tested. Analysis of 21 melanoma specimens showed homogenous staining of tumor cell cytoplasm in 16 of 17 Melan-A mRNA-positive cases and no reactivity with the three Melan-A mRNA-negative cases.