80 resultados para Human Endogenous Retrovirus


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an approximately 3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with > 85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltage-gated K+ channels are important modulators of the cardiac action potential. However, the correlation of endogenous myocyte currents with K+ channels cloned from human heart is complicated by the possibility that heterotetrameric alpha-subunit combinations and function-altering beta subunits exist in native tissue. Therefore, a variety of subunit interactions may generate cardiac K+ channel diversity. We report here the cloning of a voltage-gated K+ channel beta subunit, hKv beta 3, from adult human left ventricle that shows 84% and 74% amino acid sequence identity with the previously cloned rat Kv beta 1 and Kv beta 2 subunits, respectively. Together these three Kv beta subunits share > 82% identity in the carboxyl-terminal 329 aa and show low identity in the amino-terminal 79 aa. RNA analysis indicated that hKv beta 3 message is 2-fold more abundant in human ventricle than in atrium and is expressed in both healthy and diseased human hearts. Coinjection of hKv beta 3 with a human cardiac delayed rectifier, hKv1.5, in Xenopus oocytes increased inactivation, induced an 18-mV hyperpolarizing shift in the activation curve, and slowed deactivation (tau = 8.0 msec vs. 35.4 msec at -50 mV). hKv beta 3 was localized to human chromosome 3 by using a human/rodent cell hybrid mapping panel. These data confirm the presence of functionally important K+ channel beta subunits in human heart and indicate that beta-subunit composition must be accounted for when comparing cloned channels with endogenous cardiac currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successful gene transfer into stem cells would provide a potentially useful therapeutic modality for treatment of inherited and acquired disorders affecting hematopoietic tissues. Coculture of primate bone marrow cells with retroviral producer cells, autologous stroma, or an engineered stromal cell line expressing human stem cell factor has resulted in a low efficiency of gene transfer as reflected by the presence of 0.1-5% of genetically modified cells in the blood of reconstituted animals. Our experiments in a nonhuman primate model were designed to explore various transduction protocols that did not involve coculture in an effort to define clinically useful conditions and to enhance transduction efficiency of repopulating cells. We report the presence of genetically modified cells at levels ranging from 0.1% (granulocytes) to 14% (B lymphocytes) more than 1 year following reconstitution of myeloablated animals with CD34+ immunoselected cells transduced in suspension culture with cytokines for 4 days with a retrovirus containing the glucocerebrosidase gene. A period of prestimulation for 7 days in the presence of autologous stroma separated from the CD34+ cells by a porous membrane did not appear to enhance transduction efficiency. Infusion of transduced CD34+ cells into animals without myeloablation resulted in only transient appearance of genetically modified cells in peripheral blood. Our results document that retroviral transduction of primate repopulating cells can be achieved without coculture with stroma or producer cells and that the proportion of genetically modified cells may be highest in the B-lymphoid lineage under the given transduction conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have ectopically expressed transcription factor ETS1 in two different highly tumorigenic human colon cancer cell lines, DLD-1 and HCT116, that do not express endogenous ETS1 protein and have obtained several independent clones. The expression of wild-type ETS1 protein in these colon cancer cells reverses the transformed phenotype and tumorigenicity in a dose-dependent manner. By contrast, expression in DLD-1 cells of a variant form of ETS1, lacking transcriptional activity, did not alter the tumorigenic properties of the cells, suggesting that the reduction in tumorigenicity in these clones was specific for the wild-type ETS1 gene products. Since these colon cancer cells have multiple genetic alterations, the system described in this paper could be a good model to study the suppression of tumorigenicity at a transcriptional level, which could lead to the design and development of novel drugs for cancer treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinoblastoma cells in culture have previously been shown to express cone-specific genes but not their rod counterparts. We have detected the messages for the rod alpha, beta, and gamma subunits of cGMP phosphodiesterase (PDE), the rod alpha subunit of transducin, rod opsin, and the cone alpha' subunit of PDE in RNA of human Y-79 retinoblastoma cells by reverse transcription-PCR. Quantitative analysis of the mRNAs for the rod alpha and cone alpha' PDE subunits revealed that they were expressed at comparable levels; however, the transcript encoding the rod beta PDE subunit was 10 times more abundant in these cells. Northern hybridization analysis of Y-79 cell RNA confirmed the presence of the transcripts for rod and cone PDE catalytic subunits. To test whether the transcriptional machinery required for the expression of rod-specific genes was endogenous in Y-79 retinoblastoma cells, cultures were transfected with a construct containing the promoter region of the rod beta PDE subunit gene attached to the firefly luciferase reporter vector. Significant levels of reporter enzyme activity were observed in the cell lysates. Our results demonstrate that the Y-79 retinoblastoma cell line is a good model system for the study of transcriptional regulation of rod-specific genes.