182 resultados para Golgi


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To understand the structure, role, and regulation of individual Ca2+ pumps in plants, we have used yeast as a heterologous expression system to test the function of a gene from Arabidopsis thaliana (ECA1). ECA1 encoded a 116-kDa polypeptide that has all the conserved domains common to P-type Ca2+ pumps (EC 3.6.1.38). The amino acid sequence shared more identity with sarcoplasmic/endoplasmic reticulum (53%) than with plasma membrane (32%) Ca2+ pumps. Yeast mutants defective in a Golgi Ca2+ pump (pmr1) or both Golgi and vacuolar Ca2+ pumps (pmr1 pmc1 cnb1) were sensitive to growth on medium containing 10 mM EGTA or 3 mM Mn2+. Expression of ECA1 restored growth of either mutant on EGTA. Membranes were isolated from the pmr1 pmc1 cnb1 mutant transformed with ECA1 to determine if the ECA1 polypeptide (ECA1p) could be phosphorylated as intermediates of the reaction cycle of Ca2+-pumping ATPases. In the presence of [γ-32P]ATP, ECA1p formed a Ca2+-dependent [32P]phosphoprotein of 106 kDa that was sensitive to hydroxylamine. Cyclopiazonic acid, a blocker of animal sarcoplasmic/endoplasmic reticulum Ca2+ pumps, inhibited the formation of the phosphoprotein, whereas thapsigargin did not. Immunoblotting with an antibody against the carboxyl tail showed that ECA1p was associated mainly with the endoplasmic reticulum membranes isolated from Arabidopsis plants. The results support the model that ECA1 encodes an endoplasmic reticulum-type Ca2+ pump in Arabidopsis. The ability of ECA1p to restore growth of mutant pmr1 on medium containing Mn2+, and the formation of a Mn2+-dependent phosphoprotein suggested that ECA1p may also regulate Mn2+ homeostasis by pumping Mn2+ into endomembrane compartments of plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rer1p, a Golgi membrane protein, is required for the correct localization of an endoplasmic reticulum (ER) membrane protein, Sec12p, by a retrieval mechanism from the cis-Golgi to the ER. To test whether or not the role of Rer1p is common to multiple ER membrane proteins, we examined the localization of two other ER membrane proteins, Sec71p and Sec63p, in the wild-type and rer1 mutant yeast cells, using their fusions with an α-mating factor precursor (Mfα1p). Although Sec71p and Sec63p have completely different topology from Sec12p, their Mfα1p fusion proteins were also mislocalized to the trans-Golgi in the rer1 mutant. Overexpression of these fusions caused their mislocalization to the trans-Golgi even in the wild-type cells, and this mislocalization was partially suppressed by the co-overexpression of Rer1p. Either Sec71p or an artificial chimeric protein whose ER localization depends on Rer1p gave a competitive effect on the localization of the Mfα1-Sec71p fusion, which was abolished in rer1. Thus, Rer1p appears to be one of the common limiting components in the retrieval machinery for ER membrane proteins. The results also suggest that Sec71p and Sec63p depend on ER-Golgi recycling, at least partly, for ER localization. We also examined the effect of a mutation in α-COP, a subunit of yeast coatomer, on the localization of these ER membrane proteins. The Mfα1p fusions of Sec12p, Sec71p, and Sec63p were all more or less mislocalized in ret1–1. These observations imply that the roles of Rer1p and coatomer are much more general than thought before.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human asialoglycoprotein receptor H2a subunit contains a charged pentapeptide, EGHRG, in its ectodomain that is the only sequence absent from the H2b alternatively spliced variant. H2b exits the endoplasmic reticulum (ER) even when singly expressed, whereas H2a gives rise to a cleaved soluble secreted ectodomain fragment; uncleaved membrane-bound H2a molecules are completely retained and degraded in the ER. We have inserted the H2a pentapeptide into the sequence of the H1 subunit (H1i5), which caused complete ER retention but, unexpectedly, no degradation. This suggests that the pentapeptide is a determinant for ER retention not colocalizing in H2a with the determinant for degradation. The state of sugar chain processing and the ER localization of H1i5, which was unchanged at 15°C or after treatment with nocodazole, indicate ER retention and not retrieval from the cis-Golgi or the intermediate compartment. H1i5 folded similarly to H1, and both associated to calnexin. However, whereas H1 dissociated with a half time of 45 min, H1i5 remained bound to the chaperone for prolonged periods. The correct global folding of H2a and H1i5 and of other normal precursors and unassembled proteins and the true ER retention, and not exit and retrieval, suggest a difference in their quality control mechanism compared with that of misfolded proteins, which does involve retrieval. However, both pathways may involve calnexin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel type I transmembrane protein of COPI-coated vesicles, p23, has been demonstrated to be localized mainly to the Golgi complex. This protein and p24, another member of the p24 family, have been shown to bind coatomer via their short cytoplasmic tails. Here we demonstrate that p23 continuously cycles through the early secretory pathway. The cytoplasmic tail of p23 is shown to act as a functional retrieval signal as it confers endoplasmic reticulum (ER) residence to a CD8–p23 fusion protein. This ER localization is, at least in part, a result of retrieval from post-ER compartments because CD8–p23 fusion proteins receive post-ER modifications. In contrast, the cytoplasmic tail of p24 has been shown not to retrieve a CD8–p24 fusion protein. The coatomer binding motifs FF and KK in the cytoplasmic tail of p23 are reported to influence the steady-state localization of the CD8–p23 fusion protein within the ER–Golgi recycling pathway. It appears that the steady-state Golgi localization of endogenous p23 is maintained by its lumenal domain, as a fusion protein with the lumenal domain of CD8, and the membrane span as well as the cytoplasmic tail of p23 is no longer detected in the Golgi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brefeldin A (BFA) inhibited the exchange of ADP ribosylation factor (ARF)-bound GDP for GTP by a Golgi-associated guanine nucleotide-exchange protein (GEP) [Helms, J. B. & Rothman, J. E. (1992) Nature (London) 360, 352–354; Donaldson, J. G., Finazzi, D. & Klausner, R. D. (1992) Nature (London) 360, 350–352]. Cytosolic ARF GEP was also inhibited by BFA, but after purification from bovine brain and rat spleen, it was no longer BFA-sensitive [Tsai, S.-C., Adamik, R., Moss, J. & Vaughan, M. (1996) Proc. Natl. Acad. Sci. USA 93, 305–309]. We describe here purification from bovine brain cytosol of a BFA-inhibited GEP. After chromatography on DEAE–Sephacel, hydroxylapatite, and Mono Q and precipitation at pH 5.8, GEP was eluted from Superose 6 as a large molecular weight complex at the position of thyroglobulin (≈670 kDa). After SDS/PAGE of samples from column fractions, silver-stained protein bands of ≈190 and 200 kDa correlated with activity. BFA-inhibited GEP activity of the 200-kDa protein was demonstrated following electroelution from the gel and renaturation by dialysis. Four tryptic peptides from the 200-kDa protein had amino acid sequences that were 47% identical to sequences in Sec7 from Saccharomyces cerevisiae (total of 51 amino acids), consistent with the view that the BFA-sensitive 200-kDa protein may be a mammalian counterpart of Sec7 that plays a similar role in cellular vesicular transport and Sec7 may be a GEP for one or more yeast ARFs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Class I MHC protein primarily presents endogenous antigen but also may present exogenous antigen. Here, we investigated the intracellular pathway of spontaneously internalized class I MHC protein by confocal microscopy. β2-microglobulin (β2m), labeled with a single fluorophore, was exchanged at the surface of B cell transfectants to specifically mark cell surface and endocytosed class I MHC protein. Intracellular β2m colocalized with fluorophore-conjugated transferrin, implying that class I MHC protein endocytosed into early endosomes. These endosomes containing fluorescent β2m were found close to or within the Golgi apparatus, marked by fluorescent ceramide. Even after 24 hr of incubation, very little fluorescent β2m was found in intracellular organelles stained by DiOC6, marking the endoplasmic reticulum, or fluorophore-conjugated low density lipoprotein, marking late endosomes and lysosomes. Fluorophore-conjugated superantigens (staphylococcal enterotoxin A and B), presumed to enter cells bound to class II MHC protein, also were found to endocytose into β2m-containing early endosomes. Staining with mAb and use of transfectants expressing MHC protein attached to green fluorescent protein confirmed the presence of intracellular compartments rich in both class I and II MHC protein and demonstrated that class I and II MHC protein also colocalize in discrete microdomains at the cell surface. These cell surface microdomains also contained transferrin receptor and often were juxtaposed to cholesterol-rich lipid rafts. Thus, class I and II MHC protein meet in microdomains of the plasma membrane and endocytose into early endosomes, where both may acquire and present exogenous antigen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 200-kDa guanine nucleotide-exchange protein (p200 or GEP) for ADP-ribosylation factors 1 and 3 (ARF1 and ARF3) that was inhibited by brefeldin A (BFA) was purified earlier from cytosol of bovine brain cortex. Amino acid sequences of four tryptic peptides were 47% identical to that of Sec7 from Saccharomyces cerevisiae, which is involved in vesicular trafficking in the Golgi. By using a PCR-based procedure with two degenerate primers representing sequences of these peptides, a product similar in size to Sec7 that contained the peptide sequences was generated. Two oligonucleotides based on this product were used to screen a bovine brain library, which yielded one clone that was a partial cDNA for p200. The remainder of the cDNA was obtained by 5′ and 3′ rapid amplification of cDNA ends (RACE). The ORF of the cDNA encodes a protein of 1,849 amino acids (≈208 kDa) that is 33% identical to yeast Sec7 and 50% identical in the Sec7 domain region. On Northern blot analysis of bovine tissues, a ≈7.4-kb mRNA was identified that hybridized with a p200 probe; it was abundant in kidney, somewhat less abundant in lung, spleen, and brain, and still less abundant in heart. A six-His-tagged fusion protein synthesized in baculovirus-infected Sf9 cells demonstrated BFA-inhibited GEP activity, confirming that BFA sensitivity is an intrinsic property of this ARF GEP and not conferred by another protein component of the complex from which p200 was originally purified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influenza A virus M2 integral membrane protein is an ion channel that permits protons to enter virus particles during uncoating of virions in endosomes and also modulates the pH of the trans-Golgi network in virus-infected cells. The M2 protein is a homo-oligomer of 97 residues, and analysis by chemical cross-linking and SDS/PAGE indicates M2 forms a tetramer. However, a higher order molecular form is sometimes observed and, thus, it is necessary to determine the active form of the molecule. This was done by studying the currents of oocytes that expressed mixtures of the wild-type M2 protein (epitope tagged) and the mutant protein M2-V27S, which is resistant to the inhibitor amantadine. The composition of mixed oligomers of the two proteins expressed at the plasma membrane of individual oocytes was quantified after antibody capture of the cell surface expressed molecules and it was found that the subunits mixed freely. When the ratio of wild-type to mutant protein subunits was 0.85:0.15, the amantadine sensitivity was reduced to 50% and for a ratio of 0.71:0.29 to 20%. These results are consistent with the amantadine-resistant mutant being dominant and the oligomeric state being a tetramer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have purified and characterized a 31-kDa protein named mapmodulin that binds to the microtubule-associated proteins (MAPs) MAP2, MAP4, and tau. Mapmodulin binds free MAPs in strong preference to microtubule-associated MAPs, and appears to do so via the MAP’s tubulin-binding domain. Mapmodulin inhibits the initial rate of MAP2 binding to microtubules, a property that may allow mapmodulin to displace MAPs from the path of organelles translocating along microtubules. In support of this possibility, mapmodulin stimulates the microtubule- and dynein-dependent localization of Golgi complexes in semi-intact CHO cells. To our knowledge, mapmodulin represents the first example of a protein that can bind and potentially regulate multiple MAP proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fragile X syndrome arises from blocked expression of the fragile X mental retardation protein (FMRP). Golgi-impregnated mature cerebral cortex from fragile X patients exhibits long, thin, tortuous postsynaptic spines resembling spines observed during normal early neocortical development. Here we describe dendritic spines in Golgi-impregnated cerebral cortex of transgenic fragile X gene (Fmr1) knockout mice that lack expression of the protein. Dendritic spines on apical dendrites of layer V pyramidal cells in occipital cortex of fragile X knockout mice were longer than those in wild-type mice and were often thin and tortuous, paralleling the human syndrome and suggesting that FMRP expression is required for normal spine morphological development. Moreover, spine density along the apical dendrite was greater in the knockout mice, which may reflect impaired developmental organizational processes of synapse stabilization and elimination or pruning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is the most common autosomal recessive disorder known in humans. A candidate gene for HH called HFE has recently been cloned that encodes a novel member of the major histocompatibility complex class I family. Most HH patients are homozygous for a Cys-282→Tyr (C282Y) mutation in HFE gene, which has been shown to disrupt interaction with β2-microglobulin; a second mutation, His-63→Asp (H63D), is enriched in HH patients who are heterozygous for C282Y mutation. The aims of this study were to determine the effects of the C282Y and H63D mutations on the cellular trafficking and degradation of the HFE protein in transfected COS-7 cells. The results indicate that, while the wild-type and H63D HFE proteins associate with β2-microglobulin and are expressed on the cell surface of COS-7 cells, these capabilities are lost by the C282Y HFE protein. We present biochemical and immunofluorescence data that indicate that the C282Y mutant protein: (i) is retained in the endoplasmic reticulum and middle Golgi compartment, (ii) fails to undergo late Golgi processing, and (iii) is subject to accelerated degradation. The block in intracellular transport, accelerated turnover, and failure of the C282Y protein to be presented normally on the cell surface provide a possible basis for impaired function of this mutant protein in HH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vitamin E (α-tocopherol) is a fat-soluble antioxidant that is transported by plasma lipoproteins in the body. α-Tocopherol taken up by the liver with lipoprotein is thought to be resecreted into the plasma in very low density lipoprotein (VLDL). α-Tocopherol transfer protein (αTTP), which was recently identified as a product of the causative gene for familial isolated vitamin E deficiency, is a cytosolic liver protein and plays an important role in the efficient recycling of plasma vitamin E. To throw light on the mechanism of αTTP-mediated α-tocopherol transfer in the liver cell, we devised an assay system using the hepatoma cell line McARH7777. Using this system, we found that the secretion of α-tocopherol was more efficient in cells expressing αTTP than in matched cells lacking αTTP. Brefeldin A, which effectively inhibits VLDL secretion by disrupting the Golgi apparatus, had no effect on α-tocopherol secretion, indicating that αTTP-mediated α-tocopherol secretion is not coupled to VLDL secretion. Among other agents tested, only 25-hydroxycholesterol, a modulator of cholesterol metabolism, inhibited α-tocopherol secretion. This inhibition is most likely mediated by oxysterol-binding protein. These results suggest that αTTP present in the liver cytosol functions to stimulate secretion of cellular α-tocopherol into the extracellular medium and that the reaction utilizes a novel non-Golgi-mediated pathway that may be linked to cellular cholesterol metabolism and/or transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The yeast transport GTPase Ypt6p is dispensable for cell growth and secretion, but its lack results in temperature sensitivity and missorting of vacuolar carboxypeptidase Y. We previously identified four yeast genes (SYS1, 2, 3, and 5) that on high expression suppressed these phenotypic alterations. SYS3 encodes a 105-kDa protein with a predicted high α-helical content. It is related to a variety of mammalian Golgi-associated proteins and to the yeast Uso1p, an essential protein involved in docking of endoplasmic reticulum–derived vesicles to the cis-Golgi. Like Uso1p, Sys3p is predominatly cytosolic. According to gel chromatographic, two-hybrid, and chemical cross-linking analyses, Sys3p forms dimers and larger protein complexes. Its loss of function results in partial missorting of carboxypeptidase Y. Double disruptions of SYS3 and YPT6 lead to a significant growth inhibition of the mutant cells, to a massive accumulation of 40- to 50-nm vesicles, to an aggravation of vacuolar protein missorting, and to a defect in α-pheromone processing apparently attributable to a perturbation of protease Kex2p cycling between the Golgi and a post-Golgi compartment. The results of this study suggest that Sys3p, like Ypt6p, acts in vesicular transport (presumably at a vesicle-docking stage) between an endosomal compartment and the most distal Golgi compartment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycosylphosphatidylinositol (GPI)-anchored proteins are cell surface-localized proteins that serve many important cellular functions. The pathway mediating synthesis and attachment of the GPI anchor to these proteins in eukaryotic cells is complex, highly conserved, and plays a critical role in the proper targeting, transport, and function of all GPI-anchored protein family members. In this article, we demonstrate that MCD4, an essential gene that was initially identified in a genetic screen to isolate Saccharomyces cerevisiae mutants defective for bud emergence, encodes a previously unidentified component of the GPI anchor synthesis pathway. Mcd4p is a multimembrane-spanning protein that localizes to the endoplasmic reticulum (ER) and contains a large NH2-terminal ER lumenal domain. We have also cloned the human MCD4 gene and found that Mcd4p is both highly conserved throughout eukaryotes and has two yeast homologues. Mcd4p’s lumenal domain contains three conserved motifs found in mammalian phosphodiesterases and nucleotide pyrophosphases; notably, the temperature-conditional MCD4 allele used for our studies (mcd4–174) harbors a single amino acid change in motif 2. The mcd4–174 mutant (1) is defective in ER-to-Golgi transport of GPI-anchored proteins (i.e., Gas1p) while other proteins (i.e., CPY) are unaffected; (2) secretes and releases (potentially up-regulated cell wall) proteins into the medium, suggesting a defect in cell wall integrity; and (3) exhibits marked morphological defects, most notably the accumulation of distorted, ER- and vesicle-like membranes. mcd4–174 cells synthesize all classes of inositolphosphoceramides, indicating that the GPI protein transport block is not due to deficient ceramide synthesis. However, mcd4–174 cells have a severe defect in incorporation of [3H]inositol into proteins and accumulate several previously uncharacterized [3H]inositol-labeled lipids whose properties are consistent with their being GPI precursors. Together, these studies demonstrate that MCD4 encodes a new, conserved component of the GPI anchor synthesis pathway and highlight the intimate connections between GPI anchoring, bud emergence, cell wall function, and feedback mechanisms likely to be involved in regulating each of these essential processes. A putative role for Mcd4p as participating in the modification of GPI anchors with side chain phosphoethanolamine is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resident membrane proteins of the trans-Golgi network (TGN) of Saccharomyces cerevisiae are selectively retrieved from a prevacuolar/late endosomal compartment. Proper cycling of the carboxypeptidase Y receptor Vps10p between the TGN and prevacuolar compartment depends on Vps35p, a hydrophilic peripheral membrane protein. In this study we use a temperature-sensitive vps35 allele to show that loss of Vps35p function rapidly leads to mislocalization of A-ALP, a model TGN membrane protein, to the vacuole. Vps35p is required for the prevacuolar compartment-to-TGN transport of both A-ALP and Vps10p. This was demonstrated by phenotypic analysis of vps35 mutant strains expressing A-ALP mutants lacking either the retrieval or static retention signals and by an assay for prevacuolar compartment-to-TGN transport. A novel vps35 allele was identified that was defective for retrieval of A-ALP but functional for retrieval of Vps10p. Moreover, several other vps35 alleles were identified with the opposite characteristics: they were defective for Vps10p retrieval but near normal for A-ALP localization. These data suggest a model in which distinct structural features within Vps35p are required for associating with the cytosolic domains of each cargo protein during the retrieval process.