144 resultados para Gene Transfer Technology
Resumo:
Drosophila Mad proteins are intracellular signal transducers of decapentaplegic (dpp), the Drosophila transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) homolog. Studies in which the mammalian Smad homologs were transiently overexpressed in cultured cells have implicated Smad2 in TGF-β signaling, but the physiological relevance of the Smad3 protein in signaling by TGF-β receptors has not been established. Here we stably expressed Smad proteins at controlled levels in epithelial cells using a novel approach that combines highly efficient retroviral gene transfer and quantitative cell sorting. We show that upon TGF-β treatment Smad3 becomes rapidly phosphorylated at the SSVS motif at its very C terminus. Either attachment of an epitope tag to the C terminus or replacement of these three serine residues with alanine abolishes TGF-β-induced Smad3 phosphorylation; these proteins act in a dominant-negative fashion to block the antiproliferative effect of TGF-β in mink lung epithelial cells. A Smad3 protein in which the three C-terminal serines have been replaced by aspartic acids is also a dominant inhibitor of TGF-β signaling, but can activate plasminogen activator inhibitor 1 (PAI-1) transcription in a ligand-independent fashion when its nuclear localization is forced by transient overexpression. Phosphorylation of the three C-terminal serine residues of Smad3 by an activated TGF-β receptor complex is an essential step in signal transduction by TGF-β for both inhibition of cell proliferation and activation of the PAI-1 promoter.
Resumo:
Stimulation of antitumor immune mechanisms is the primary goal of cancer immunotherapy, and accumulating evidence suggests that effective alteration of the host–tumor relationship involves immunomodulating cytokines and also the presence of costimulatory molecules. To examine the antitumor effect of direct in vivo gene transfer of murine interleukin 12 (IL-12) and B7-1 into tumors, we developed an adenovirus (Ad) vector, AdIL12–B7-1, that encodes the two IL-12 subunits in early region 1 (E1) and the B7-1 gene in E3 under control of the murine cytomegalovirus promoter. This vector expressed high levels of IL-12 and B7-1 in infected murine and human cell lines and in primary murine tumor cells. In mice bearing tumors derived from a transgenic mouse mammary adenocarcinoma, a single intratumoral injection with a low dose (2.5 × 107 pfu/mouse) of AdIL12–B7-1 mediated complete regression in 70% of treated animals. By contrast, administration of a similar dose of recombinant virus encoding IL-12 or B7-1 alone resulted in only a delay in tumor growth. Interestingly, coinjection of two different viruses expressing either IL-12 or B7-1 induced complete tumor regression in only 30% of animals treated at this dose. Significantly, cured animals remained tumor free after rechallenge with fresh tumor cells, suggesting that protective immunity had been induced by treatment with AdIL12–B7-1. These results support the use of Ad vectors as a highly efficient delivery system for synergistically acting molecules and show that the combination of IL-12 and B7-1 within a single Ad vector might be a promising approach for in vivo cancer therapy.
Resumo:
We describe a plant protoplast transformation method that provides transformants with a simple pattern of integration of a foreign gene. The approach is to deliver into plant protoplasts by direct gene transfer the Agrobacterium virulence genes virD1 and virD2 with or without virE2, together with a target plasmid containing a gene of interest flanked by Agrobacterium T-DNA border repeat sequences of 25 bp. We present evidence of T-DNA formation in maize protoplasts and its integration into the maize genome. The frequency of VirD1-VirD2-mediated integration events was about 20–35% of the total number of transformants. The addition of virE2 doubled the transformation efficiency. The method described here is of sufficient efficiency and simplicity to be useful for the production of transgenic plants with single-copy well-defined transgenic inserts.
Resumo:
Development of in utero gene transfer approaches may provide therapies for genetic disorders with perinatal morbidity. In hemophilia A, prenatal and postnatal bleeding may be catastrophic, and modest increments in factor VIII (FVIII) activity are therapeutic. We performed transuterine i.p. gene transfer at day 15 of gestation in a murine model of hemophilia A. Normal, carrier (XHX), and FVIII-deficient (XHY and XHXH) fetuses injected with adenoviral vectors carrying luciferase or β-galactosidase reporter genes showed high-level gene expression with 91% fetal survival. The live-born rates of normal and FVIII-deficient animals injected in utero with adenovirus murine FVIII (3.3 × 105 plaque-forming units) was 87%. FVIII activity in plasma was 50.7 ± 10.5% of normal levels at day 2 of life, 7.2 ± 2.2% by day 15 of life, and no longer detectable at day 21 of life in hemophilic animals. Injection of higher doses of murine FVIII adenovirus at embryonic day 15 produced supranormal levels of FVIII activity in the neonatal period. PCR analysis identified viral genomes primarily in the liver, intestine, and spleen, although adenoviral DNA was detected in distal tissues when higher doses of adenovirus were administered. These studies show that transuterine i.p. injection of adenoviral vectors produces therapeutic levels of circulating FVIII throughout the neonatal period. The future development of efficient and persisting vectors that produce long-term gene expression may allow for in utero correction of genetic diseases originating in the fetal liver, hematopoietic stem cells, as well as other tissues.
Resumo:
The intestinal epithelium is anatomically positioned to serve as the critical interface between the lumen and the mucosal immune system. In addition to MHC class I and II antigens, intestinal epithelia constitutively express the nonclassical MHC molecule CD1d, a transmembrane molecule with a short cytoplasmic tail expressed as a β2-microglobulin-associated 48-kDa glycoprotein and novel β2-microglobulin-independent 37-kDa nonglycosylated protein on intestinal epithelia. At present, it is not known whether extracellular ligands can signal intestinal epithelial CD1d. To define signaling of CD1d cytoplasmic tail, retrovirus-mediated gene transfer was used to generate stable cell lines expressing wild-type CD1d or a chimeric molecule (extracellular CD1d and cytoplasmic CD1a), and surface CD1d was triggered by antibody crosslinking. Although wild-type CD1d was readily activated (tyrosine phosphorylation), no demonstrable signal was evident in cell lines expressing the chimeric molecule. Subsequent studies revealed that anti-CD1d crosslinking specifically induces epithelial IL-10 mRNA and protein and is blocked by the tyrosine kinase inhibitor genistein. Further studies addressing epithelial-derived IL-10 revealed that anti-CD1d crosslinking attenuates IFN-γ signaling and that such attenuation is reversed by addition of functionally inhibitory IL-10 antibodies. These results define signaling through surface CD1d, and, importantly, they demonstrate that this pathway may serve to dampen epithelial proinflammatory signals.
Resumo:
The induced expression of c-Myc in plasmacytomas in BALB/c mice is regularly associated with nonrandom chromosomal translocations that juxtapose the c-myc gene to one of the Ig loci on chromosome 12 (IgH), 6 (IgK), or 16 (IgL). The DCPC21 plasmacytoma belongs to a small group of plasmacytomas that are unusual in that they appear to be translocation-negative. In this paper, we show the absence of any c-myc-activating chromosomal translocation for the DCPC21 by using fluorescent in situ hybridization, chromosome painting, and spectral karyotyping. We find that DCPC21 harbors c-myc and IgH genes on extrachromosomal elements (EEs) from which c-myc is transcribed, as shown by c-myc mRNA tracks and extrachromosomal gene transfer experiments. The transcriptional activity of these EEs is supported further by the presence of the transcription-associated phosphorylation of histone H3 (H3P) on the EEs. Thus, our data suggest that in this plasmacytoma, c-Myc expression is achieved by an alternative mechanism. The expression of the c-Myc oncoprotein is initiated outside the chromosomal locations of the c-myc gene, i.e., from EEs, which can be considered functional genetic units. Our data also imply that other “translocation-negative” experimental and human tumors with fusion transcripts or oncogenic activation may indeed carry translocation(s), however, in an extrachromosomal form.
Resumo:
Knowledge of the origin and evolution of gene families is critical to our understanding of the evolution of protein function. To gain a detailed understanding of the evolution of the small heat shock proteins (sHSPs) in plants, we have examined the evolutionary history of the chloroplast (CP)-localized sHSPs. Previously, these nuclear-encoded CP proteins had been identified only from angiosperms. This study reveals the presence of the CP sHSPs in a moss, Funaria hygrometrica. Two clones for CP sHSPs were isolated from a F. hygrometrica heat shock cDNA library that represent two distinct CP sHSP genes. Our analysis of the CP sHSPs reveals unexpected evolutionary relationships and patterns of sequence conservation. Phylogenetic analysis of the CP sHSPs with other plant CP sHSPs and eukaryotic, archaeal, and bacterial sHSPs shows that the CP sHSPs are not closely related to the cyanobacterial sHSPs. Thus, they most likely evolved via gene duplication from a nuclear-encoded cytosolic sHSP and not via gene transfer from the CP endosymbiont. Previous sequence analysis had shown that all angiosperm CP sHSPs possess a methionine-rich region in the N-terminal domain. The primary sequence of this region is not highly conserved in the F. hygrometrica CP sHSPs. This lack of sequence conservation indicates that sometime in land plant evolution, after the divergence of mosses from the common ancestor of angiosperms but before the monocot–dicot divergence, there was a change in the selective constraints acting on the CP sHSPs.
Resumo:
The brain serotonin (5-hydroxytryptamine; 5-HT) system is a powerful modulator of emotional processes and a target of medications used in the treatment of psychiatric disorders. To evaluate the contribution of serotonin 5-HT1A receptors to the regulation of these processes, we have used gene-targeting technology to generate 5-HT1A receptor-mutant mice. These animals lack functional 5-HT1A receptors as indicated by receptor autoradiography and by resistance to the hypothermic effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Homozygous mutants display a consistent pattern of responses indicative of elevated anxiety levels in open-field, elevated-zero maze, and novel-object assays. Moreover, they exhibit antidepressant-like responses in a tail-suspension assay. These results indicate that the targeted disruption of the 5-HT1A receptor gene leads to heritable perturbations in the serotonergic regulation of emotional state. 5-HT1A receptor-null mutant mice have potential as a model for investigating mechanisms through which serotonergic systems modulate affective state and mediate the actions of psychiatric drugs.
Resumo:
The transcription factor NF-κB is a pivotal regulator of inflammatory responses. While the activation of NF-κB in the arthritic joint has been associated with rheumatoid arthritis (RA), its significance is poorly understood. Here, we examine the role of NF-κB in animal models of RA. We demonstrate that in vitro, NF-κB controlled expression of numerous inflammatory molecules in synoviocytes and protected cells against tumor necrosis factor α (TNFα) and Fas ligand (FasL) cytotoxicity. Similar to that observed in human RA, NF-κB was found to be activated in the synovium of rats with streptococcal cell wall (SCW)-induced arthritis. In vivo suppression of NF-κB by either proteasomal inhibitors or intraarticular adenoviral gene transfer of super-repressor IκBα profoundly enhanced apoptosis in the synovium of rats with SCW- and pristane-induced arthritis. This indicated that the activation of NF-κB protected the cells in the synovium against apoptosis and thus provided the potential link between inflammation and hyperplasia. Intraarticular administration of NF-kB decoys prevented the recurrence of SCW arthritis in treated joints. Unexpectedly, the severity of arthritis also was inhibited significantly in the contralateral, untreated joints, indicating beneficial systemic effects of local suppression of NF-κB. These results establish a mechanism regulating apoptosis in the arthritic joint and indicate the feasibility of therapeutic approaches to RA based on the specific suppression of NF-κB.
Resumo:
Deletions of all or part of chromosome 10 are the most common genetic alterations in high-grade gliomas. The PTEN gene (also called MMAC1 and TEP1) maps to chromosome region 10q23 and has been implicated as a target of alteration in gliomas and also in other cancers such as those of the breast, prostate, and kidney. Here we sought to provide a functional test of its candidacy as a growth suppressor in glioma cells. We used a combination of Northern blot analysis, protein truncation assays, and sequence analysis to determine the types and frequency of PTEN mutations in glioma cell lines so that we could define appropriate recipients to assess the growth suppressive function of PTEN by gene transfer. Introduction of wild-type PTEN into glioma cells containing endogenous mutant alleles caused growth suppression, but was without effect in cells containing endogenous wild-type PTEN. The ectopic expression of PTEN alleles, which carried mutations found in primary tumors and have been shown or are expected to inactivate its phosphatase activity, caused little growth suppression. These data strongly suggest that PTEN is a protein phosphatase that exhibits functional and specific growth-suppressing activity.
Resumo:
Alveolar rhabdomyosarcoma (ARMS) cells often harbor one of two unique chromosomal translocations, either t(2;13)(q35;q14) or t(1;13)(p36;q14). The chimeric proteins expressed from these rearrangements, PAX3-FKHR and PAX7-FKHR, respectively, are potent transcriptional activators. In an effort to exploit these unique cancer-specific molecules to achieve ARMS-specific expression of therapeutic genes, we have studied the expression of a minimal promoter linked to six copies of a PAX3 DNA binding site, prs-9. In transient transfections, expression of the prs-9-regulated reporter genes was ≈250-fold higher than expression of genes lacking the prs-9 sequences in cell lines derived from ARMS, but remained at or below baseline levels in other cells. High expression of these prs-9-regulated genes was also observed in a cancer cell line that lacks t(2;13) but was stably transfected with a plasmid expressing PAX3-FKHR. Transfection of a plasmid containing the diphtheria toxin A chain gene regulated by prs-9 sequences (pA3–6PED) was selectively cytotoxic for PAX3-FKHR-expressing cells. This was shown by inhibition of gene expression from cotransfected plasmids and by direct cytotoxicity after transfected cells were isolated by cell sorting. Gene transfer of pA3–6PED may thus be useful as a cancer-specific treatment strategy for t(2;13)- or t(1;13)-positive ARMS. Furthermore, gene transfer of fusion protein-regulated toxin genes might also be applied to the treatment of other cancers that harbor cancer-specific chromosomal translocations involving transcription factors.
Resumo:
We have proposed that reduced activity of inosine-5′-monophosphate dehydrogenase (IMPD; IMP:NAD oxidoreductase, EC 1.2.1.14), the rate-limiting enzyme for guanine nucleotide biosynthesis, in response to wild-type p53 expression, is essential for p53-dependent growth suppression. A gene transfer strategy was used to demonstrate that under physiological conditions constitutive IMPD expression prevents p53-dependent growth suppression. In these studies, expression of bax and waf1, genes implicated in p53-dependent growth suppression in response to DNA damage, remains elevated in response to p53. These findings indicate that under physiological conditions IMPD is a rate-determining factor for p53-dependent growth regulation. In addition, they suggest that the impd gene may be epistatic to bax and waf1 in growth suppression. Because of the role of IMPD in the production and balance of GTP and ATP, essential nucleotides for signal transduction, these results suggest that p53 controls cell division signals by regulating purine ribonucleotide metabolism.
Resumo:
It is well established that integrins and extracellular matrix (ECM) play key roles in cell migration, but the underlying mechanisms are poorly defined. We describe a novel mechanism whereby the integrin α6β1, a laminin receptor, can affect cell motility and induce migration onto ECM substrates with which it is not engaged. By using DNA-mediated gene transfer, we expressed the human integrin subunit α6A in murine embryonic stem (ES) cells. ES cells expressing α6A (ES6A) at the surface dimerized with endogenous β1, extended numerous filopodia and lamellipodia, and were intensely migratory in haptotactic assays on laminin (LN)-1. Transfected α6A was responsible for these effects, because cells transfected with control vector or α6B, a cytoplasmic domain α6 isoform, displayed compact morphology and no migration, like wild-type ES cells. The ES6A migratory phenotype persisted on fibronectin (Fn) and Ln-5. Adhesion inhibition assays indicated that α6β1 did not contribute detectably to adhesion to these substrates in ES cells. However, anti-α6 antibodies completely blocked migration of ES6A cells on Fn or Ln-5. Control experiments with monensin and anti-ECM antibodies indicated that this inhibition could not be explained by deposition of an α6β1 ligand (e.g., Ln-1) by ES cells. Cross-linking with secondary antibody overcame the inhibitory effect of anti-α6 antibodies, restoring migration or filopodia extension on Fn and Ln-5. Thus, to induce migration in ES cells, α6Aβ1 did not have to engage with an ECM ligand but likely participated in molecular interactions sensitive to anti-α6β1 antibody and mimicked by cross-linking. Antibodies to the tetraspanin CD81 inhibited α6Aβ1-induced migration but had no effect on ES cell adhesion. It is known that CD81 is physically associated with α6β1, therefore our results suggest a mechanism by which interactions between α6Aβ1 and CD81 may up-regulate cell motility, affecting migration mediated by other integrins.
Resumo:
One of the current limitations of gene transfer protocols involving mammalian genomes is the lack of spatial and temporal control over the desired gene manipulation. Starting from a human keratin gene showing a complex regulation as a template, we identified regulatory sequences that confer inducible gene expression in a subpopulation of keratinocytes in stratified epithelia of adult transgenic mice. We used this cassette to produce transgenic mice with an inducible skin blistering phenotype mimicking a form of epidermolytic hyperkeratosis, a keratin gene disorder. Upon induction by topical application of a phorbol ester, the mutant keratin transgene product accumulates in the differentiating layers of epidermis, leading to keratinocyte lysis after application of mechanical trauma. This mouse model will allow for a better understanding of the complex relationship between keratin mutation, keratinocyte cytoarchitecture, and hypersensitivity to trauma. The development of an inducible expression vector showing an exquisite cellular specificity has important implications for manipulating genes in a spatially and temporally controlled fashion in transgenic mice, and for the design of gene therapy strategies using skin as a tissue source for the controlled delivery of foreign substances.
Resumo:
The yolk sac, first site of hematopoiesis during mammalian development, contains not only hematopoietic stem cells but also the earliest precursors of endothelial cells. We have previously shown that a nonadherent yolk sac cell population (WGA+, density <1.077, AA4.1+) can give rise to B cells, T cells, and myeloid cells both in vitro and in vivo. We now report on the ability of a yolk sac-derived cloned endothelial cell line (C166) to provide a suitable microenvironment for expansion of these early precursor cells. Single day 10 embryonic mouse yolk sac hematopoietic stem cells were expanded >100 fold within 8 days by coculture with irradiated C166 cells. Colony-forming ability was retained for at least three passages in vitro, with retention of the ability to differentiate into T-cell, B-cell, and myeloid lineages. Stem cell properties were maintained by a significant fraction of nonadherent cells in the third passage, although these stem cells expressed a somewhat more mature cell surface phenotype than the initial yolk sac stem cells. When reintroduced into adult allogeneic immunocompromised (scid) hosts, they were able to give rise to all of the leukocyte lineages, including T cells, B cells, and myeloid cells. We conclude that yolk sac endothelial cells can support the stable proliferation of multipotential hematopoietic stem cells, thus generating adequate numbers of cells for study of the mechanisms involved in their subsequent development and differentiation, for in vivo hematopoietic restitution, and for potential use as a vehicle for gene transfer.