142 resultados para GERMLINE MUTATIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The homeotic genes controlling segment identity in Drosophila are repressed by the Polycomb group of genes (PcG) and are activated by genes of the trithorax group (trxG). An F1 screen for dominant enhancers of Polycomb yielded a point mutation in the heat shock cognate gene, hsc4, along with mutations corresponding to several known PcG loci. The new mutation is a more potent enhancer of Polycomb phenotypes than an apparent null allele of hsc4 is, although even the null allele occasionally displays homeotic phenotypes associated with the PcG. Previous biochemical results had suggested that HSC4 might interact with BRAHMA, a trxG member. Further analyses now show that there is no physical or genetic interaction between HSC4 and the Brahma complex. HSC4 might be needed for the proper folding of a component of the Polycomb repression complex, or it may be a functional member of that complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently discovered aging-dependent large accumulation of point mutations in the human fibroblast mtDNA control region raised the question of their occurrence in postmitotic tissues. In the present work, analysis of biopsied or autopsied human skeletal muscle revealed the absence or only minimal presence of those mutations. By contrast, surprisingly, most of 26 individuals 53 to 92 years old, without a known history of neuromuscular disease, exhibited at mtDNA replication control sites in muscle an accumulation of two new point mutations, i.e., A189G and T408A, which were absent or marginally present in 19 individuals younger than 34 years. These two mutations were not found in fibroblasts from 22 subjects 64 to 101 years of age (T408A), or were present only in three subjects in very low amounts (A189G). Furthermore, in several older individuals exhibiting an accumulation in muscle of one or both of these mutations, they were nearly absent in other tissues, whereas the most frequent fibroblast-specific mutation (T414G) was present in skin, but not in muscle. Among eight additional individuals exhibiting partial denervation of their biopsied muscle, four subjects >80 years old had accumulated the two muscle-specific point mutations, which were, conversely, present at only very low levels in four subjects ≤40 years old. The striking tissue specificity of the muscle mtDNA mutations detected here and their mapping at critical sites for mtDNA replication strongly point to the involvement of a specific mutagenic machinery and to the functional relevance of these mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acquisition of genotoxin-induced mutations in the mammalian germline is detrimental to the stable transfer of genomic information. In somatic cells, nucleotide excision repair (NER) is a major pathway to counteract the mutagenic effects of DNA damage. Two NER subpathways have been identified, global genome repair (GGR) and transcription-coupled repair (TCR). In contrast to somatic cells, little is known regarding the expression of these pathways in germ cells. To address this basic question, we have studied NER in rat spermatogenic cells in crude cell suspension, in enriched cell stages and within seminiferous tubules after exposure to UV or N-acetoxy-2-acetylaminofluorene. Surprisingly, repair in spermatogenic cells was inefficient in the genome overall and in transcriptionally active genes indicating non-functional GGR and TCR. In contrast, extracts from early/mid pachytene cells displayed dual incision activity in vitro as high as extracts from somatic cells, demonstrating that the proteins involved in incision are present and functional in premeiotic cells. However, incision activities of extracts from diplotene cells and round spermatids were low, indicating a stage-dependent expression of incision activity. We hypothesize that sequestering of NER proteins by mispaired regions in DNA involved in synapsis and recombination may underlie the lack of NER activity in premeiotic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dwarf pea (Pisum sativum) mutants lka and lkb are brassinosteroid (BR) insensitive and deficient, respectively. The dwarf phenotype of the lkb mutant was rescued to wild type by exogenous application of brassinolide and its biosynthetic precursors. Gas chromatography-mass spectrometry analysis of the endogenous sterols in this mutant revealed that it accumulates 24-methylenecholesterol and isofucosterol but is deficient in their hydrogenated products, campesterol and sitosterol. Feeding experiments using 2H-labeled 24-methylenecholesterol indicated that the lkb mutant is unable to isomerize and/or reduce the Δ24(28) double bond. Dwarfism of the lkb mutant is, therefore, due to BR deficiency caused by blocked synthesis of campesterol from 24-methylenecholesterol. The lkb mutation also disrupted sterol composition of the membranes, which, in contrast to those of the wild type, contained isofucosterol as the major sterol and lacked stigmasterol. The lka mutant was not BR deficient, because it accumulated castasterone. Like some gibberellin-insensitive dwarf mutants, overproduction of castasterone in the lka mutant may be ascribed to the lack of a feedback control mechanism due to impaired perception/signal transduction of BRs. The possibility that castasterone is a biologically active BR is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of the alcohol dehydrogenase gene (ADH) of Arabidopsis is known to be induced by environmental stresses and regulated developmentally. We used a negative-selection approach to isolate mutants that were defective in regulating the expression of the ADH gene during seed germination; we then characterized three recessive mutants, aar1–1, aar1–2, and aar2–1, which belong to two complementation groups. In addition to their defects during seed germination, mutations in the AAR1 and AAR2 genes also affected anoxic and hypoxic induction of ADH and other glycolytic genes in mature plants. The aar1 and aar2 mutants were also defective in responding to cold and osmotic stress. The two allelic mutants aar1–1and aar1–2 exhibited different phenotypes under cold and osmotic stresses. Based on our results we propose that these mutants are defective in a late step of the signaling pathways that lead to increased expression of the ADH gene and glycolytic genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BRCA1 is a breast and ovarian cancer-specific tumor suppressor that seems to be involved in transcription and DNA repair. Here we report that BRCA1 exhibits a bona fide ubiquitin (Ub) protein ligase (E3) activity, and that cancer-predisposing mutations within the BRCA1 RING domain abolish its Ub ligase activity. Furthermore, these mutants are unable to reverse γ-radiation hypersensitivity of BRCA1-null human breast cancer cells, HCC1937. Additionally, these mutations within the BRCA1 RING domain are not capable of restoring a G2 + M checkpoint in HCC1937 cells. These results establish a link between Ub protein ligase activity and γ-radiation protection function of BRCA1, and provide an explanation for why mutations within the BRCA1 RING domain predispose to cancer. Furthermore, we propose that the analysis of the Ub ligase activity of RING-domain mutations identified in patients may constitute an assay to predict predisposition to cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leishmania parasites lack a purine biosynthetic pathway and depend on surface nucleoside and nucleobase transporters to provide them with host purines. Leishmania donovani possess two closely related genes that encode high affinity adenosine-pyrimidine nucleoside transporters LdNT1.1 and LdNT1.2 and that transport the toxic adenosine analog tubercidin in addition to the natural substrates. In this study, we have characterized a drug-resistant clonal mutant of L. donovani (TUBA5) that is deficient in LdNT1 transport and consequently resistant to tubercidin. In TUBA5 cells, the LdNT1.2 genes had the same sequence as wild-type cells. However, because LdNT1.2 mRNA is not detectable in either wild-type or TUBA5 promastigotes, LdNT1.2 does not contribute to nucleoside transport in this stage of the life cycle. In contrast, the TUBA5 cells were compound heterozygotes at the LdNT1.1 locus containing two mutant alleles that encompassed distinct point mutations, each of which impaired transport function. One of the mutant LdNT1.1 alleles encoded a G183D substitution in predicted TM 5, and the other allele contained a C337Y change in predicted TM 7. Whereas G183D and C337Y mutants had only slightly elevated adenosine Km values, the severe impairment in transport resulted from drastically (≈20-fold) reduced Vmax values. Because these transporters were correctly targeted to the plasma membrane, the reduction in Vmax apparently resulted from a defect in translocation. Strikingly, G183 was essential for pyrimidine nucleoside but not adenosine transport. A mutant transporter with a G183A substitution had an altered substrate specificity, exhibiting robust adenosine transport but undetectable uridine uptake. These results suggest that TM 5 is likely to form part of the nucleoside translocation pathway in LdNT1.1

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-linked hypohidrotic ectodermal dysplasia (XLHED) is a heritable disorder of the ED-1 gene disrupting the morphogenesis of ectodermal structures. The ED-1 gene product, ectodysplasin-A (EDA), is a tumor necrosis factor (TNF) family member and is synthesized as a membrane-anchored precursor protein with the TNF core motif located in the C-terminal domain. The stalk region of EDA contains the sequence -Arg-Val-Arg-Arg156-Asn-Lys-Arg159-, representing overlapping consensus cleavage sites (Arg-X-Lys/Arg-Arg↓) for the proprotein convertase furin. Missense mutations in four of the five basic residues within this sequence account for ≈20% of all known XLHED cases, with mutations occurring most frequently at Arg156, which is shared by the two consensus furin sites. These analyses suggest that cleavage at the furin site(s) in the stalk region is required for the EDA-mediated cell-to-cell signaling that regulates the morphogenesis of ectodermal appendages. Here we show that the 50-kDa EDA parent molecule is cleaved at -Arg156Asn-Lys-Arg159↓- to release the soluble C-terminal fragment containing the TNF core domain. This cleavage appears to be catalyzed by furin, as release of the TNF domain was blocked either by expression of the furin inhibitor α1-PDX or by expression of EDA in furin-deficient LoVo cells. These results demonstrate that mutation of a functional furin cleavage site in a developmental signaling molecule is a basis for human disease (XLHED) and raise the possibility that furin cleavage may regulate the ability of EDA to act as a juxtacrine or paracrine factor.