89 resultados para GENE RECOMBINANT


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prevalence of cholesterol gallstones differs among inbred strains of mice fed a diet containing 15% (wt/wt) dairy fat, 1% (wt/wt) cholesterol, and 0.5% (wt/wt) cholic acid. Strains C57L, SWR, and A were notable for a high prevalence of cholelithiasis; strains C57BL/6, C3H, and SJL had an intermediate prevalence; and strains SM, AKR, and DBA/2 exhibited no cholelithiasis after consuming the diet for 18 weeks. Genetic analysis of the difference in gallstone prevalence rates between strains AKR and C57L was carried out by using the AKXL recombinant inbred strain set and (AKR x C57L)F1 x AKR backcross mice. Susceptibility to gallstone formation was found to be a dominant trait determined by at least two genes. A major gene, named Lith1, mapped to mouse chromosome 2. When examined after 6 weeks on the lithogenic diet, the activity of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (EC 1.1.1.88) was downregulated as expected in the gallstone-resistant strains, AKR and SJL, but this enzyme failed to downregulate in C57L and SWR, the gallstone-susceptible strains. This suggests that regulation of the rate-limiting enzyme in cholesterol biosynthesis may be pivotal in determining the occurrence and severity of cholesterol hypersecretion and hence lithogenicity of gallbladder bile. These studies indicate that genetic factors are critical in determining gallstone formation and that the genetic resources of the mouse model may permit these factors to be identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vigilance, anxiety, epileptic activity, and muscle tone can be modulated by drugs acting at the benzodiazepine (BZ) site of gamma-aminobutyric acid type A (GABAA) receptors. In vivo, BZ sites are potential targets for endogenous ligands regulating the corresponding central nervous system states. To assess the physiological relevance of BZ sites, mice were generated containing GABAA receptors devoid of BZ sites. Following targeted disruption of the gamma 2 subunit gene, 94% of the BZ sites were absent in brain of neonatal mice, while the number of GABA sites was only slightly reduced. Except for the gamma 2 subunit, the level of expression and the regional and cellular distribution of the major GABAA receptor subunits were unaltered. The single channel main conductance level and the Hill coefficient were reduced to values consistent with recombinant GABAA receptors composed of alpha and beta subunits. The GABA response was potentiated by pentobarbital but not by flunitrazepam. Diazepam was inactive behaviorally. Thus, the gamma 2 subunit is dispensable for the assembly of functional GABAA receptors but is required for normal channel conductance and the formation of BZ sites in vivo. BZ sites are not essential for embryonic development, as suggested by the normal body weight and histology of newborn mice. Postnatally, however, the reduced GABAA receptor function is associated with retarded growth, sensorimotor dysfunction, and drastically reduced life-span. The lack of postnatal GABAA receptor regulation by endogenous ligands of BZ sites might contribute to this phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The injection of recombinant erythropoietin (Epo) is now widely used for long-term treatment of anemia associated with chronic renal failure, cancer, and human immunodeficiency virus infections. The ability to deliver this hormone by gene therapy rather than by repeated injections could provide substantial clinical and economic benefits. As a preliminary approach, we investigated in rats the expression and biological effects of transplanting autologous vascular smooth muscle cells transduced with a retroviral vector encoding rat Epo cDNA. Vector-derived Epo secretion caused increases in reticulocytes, with peak levels of 7.8-9.6% around day 10 after implantation. The initial elevation in reticulocytes was followed by clinically significant increases in hematocrit and hemoglobin for up to 11 weeks. Ten control and treated animals showed mean hematocrits of 44.9 +/- 0.4% and 58.7 +/- 3.1%, respectively (P < 0.001), and hemoglobin values of 15.6 +/- 0.1 g/dl and 19.8 +/- 0.9 g/dl, respectively (P < 0.001). There were no significant differences between control and treated animals in the number of white blood cells and platelets. Kidney and to a lesser extent liver are specific organs that synthesize Epo in response to tissue oxygenation. In the treated animals, endogenous Epo mRNA was largely down regulated in kidney and absent from liver. These results indicate that vascular smooth muscle cells can be genetically modified to provide treatment of anemias due to Epo deficiency and suggest that this cell type may be targeted in the treatment of other diseases requiring systemic therapeutic protein delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recombinant adenoviruses are attractive vehicles for liver-directed gene therapy because of the high efficiency with which they transfer genes to hepatocytes in vivo. First generation recombinant adenoviruses deleted of E1 sequences also express recombinant and early and late viral genes, which lead to development of destructive cellular immune responses. Previous studies indicated that class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes (CTLs) play a major role in eliminating virus-infected cells. The present studies utilize mouse models to evaluate the role of T-helper cells in the primary response to adenovirus-mediated gene transfer to the liver. In vivo ablation of CD4+ cells or interferon gamma (IFN-gamma) was sufficient to prevent the elimination of adenovirus-transduced hepatocytes, despite the induction of a measurable CTL response. Mobilization of an effective TH1 response as measured by in vitro proliferation assays was associated with substantial upregulation of MHC class I expression, an effect that was prevented in IFN-gamma-deficient animals. These results suggest that elimination of virus-infected hepatocytes in a primary exposure to recombinant adenovirus requires both induction of antigen-specific CTLs as well as sensitization of the target cell by TH1-mediated activation of MHC class I expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retrovirus-mediated gene transfer into hematopoietic cells may provide a means of treating both inherited and acquired diseases involving hematopoietic cells. Implementation of this approach for disorders resulting from mutations affecting the beta-globin gene (e.g., beta-thalassemia and sickle cell anemia), however, has been hampered by the inability to generate recombinant viruses able to efficiently and faithfully transmit the necessary sequences for appropriate gene expression. We have addressed this problem by carefully examining the interactions between retroviral and beta-globin gene sequences which affect vector transmission, stability, and expression. First, we examined the transmission properties of a large number of different recombinant proviral genomes which vary both in the precise nature of vector, beta-globin structural gene, and locus control region (LCR) core sequences incorporated and in the placement and orientation of those sequences. Through this analysis, we identified one specific vector, termed M beta 6L, which carries both the human beta-globin gene and core elements HS2, HS3, and HS4 from the LCR and faithfully transmits recombinant proviral sequences to cells with titers greater than 10(6) per ml. Populations of murine erythroleukemia (MEL) cells transduced by this virus expressed levels of human beta-globin transcript which, on a per gene copy basis, were 78% of the levels detected in an MEL-derived cell line, Hu11, which carries human chromosome 11, the site of the beta-globin locus. Analysis of individual transduced MEL cell clones, however, indicated that, while expression was detected in every clone tested (n = 17), the levels of human beta-globin treatment varied between 4% and 146% of the levels in Hu11. This clonal variation in expression levels suggests that small beta-globin LCR sequences may not provide for as strict chromosomal position-independent expression of beta-globin as previously suspected, at least in the context of retrovirus-mediated gene transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Arg8]vasopressin (AVP) stimulates adrenocorticotropic hormone release from the anterior pituitary by acting on the V1b AVP receptor. This receptor can be distinguished from the vascular/hepatic V1a and renal V2 AVP receptors by its differential binding affinities for structural analogous of AVP. Recent studies have shown that the cloned V1a and V2 receptors are structurally related. We have isolated a clone encoding the V1b receptor from a rat pituitary cDNA library using polymerase chain reaction (PCR)-based methodology. The rat V1b receptor is a protein of 421 amino acids that has 37-50% identity with the V1a and V2 receptors. Homology is particularly high in the seven putative membrane-spanning domains of these guanine nucleotide-binding protein-coupled receptors. Expression of the recombinant receptor in mammalian cells shows the same binding specificity for AVP agonists and antagonists as the rat pituitary V1b receptor. AVP-stimulated phosphotidylinositol hydrolysis and intracellular Ca2+ mobilization in Chinese hamster ovary or COS-7 cells expressing the cloned receptor suggest second messenger signaling through phospholipase C. RNA blot analysis, reverse transcription PCR, and in situ hybridization studies reveal that V1b receptor mRNA is expressed in the majority of pituitary corticotropes as well as in multiple brain regions and a number of peripheral tissues, including kidney, thymus, heart, lung, spleen, uterus, and breast. Thus, the V1b receptor must mediate some of the diverse biological effects of AVP in the pituitary as well as other organs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an approximately 3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with > 85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both the DNA elements and the nuclear factors that direct termination of ribosomal gene transcription exhibit species-specific differences. Even between mammals--e.g., human and mouse--the termination signals are not identical and the respective transcription termination factors (TTFs) which bind to the terminator sequence are not fully interchangeable. To elucidate the molecular basis for this species-specificity, we have cloned TTF-I from human and mouse cells and compared their structural and functional properties. Recombinant TTF-I exhibits species-specific DNA binding and terminates transcription both in cell-free transcription assays and in transfection experiments. Chimeric constructs of mouse TTF-I and human TTF-I reveal that the major determinant for species-specific DNA binding resides within the C terminus of TTF-I. Replacing 31 C-terminal amino acids of mouse TTF-I with the homologous human sequences relaxes the DNA-binding specificity and, as a consequence, allows the chimeric factor to bind the human terminator sequence and to specifically stop rDNA transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retrovirus-mediated gene transfer into hepatocytes in vivo results in long-term gene expression. Limitations include the need to remove two-thirds of the liver and the relatively low frequency of gene transfer. To increase gene transfer without surgical hepatectomy, mouse hepatocytes were transduced in vivo with a recombinant adenovirus that transiently expressed urokinase, resulting in high rates of asynchronous liver regeneration. During the regenerative phase, in vivo retroviral-mediated gene transfer in hepatocytes resulted in 5- to 10-fold greater transduction efficiencies than that obtained by conventional partial hepatectomy. In 3-4 weeks, the architecture and microscopic structure of the recipient livers were normal. The two-viral system of achieving permanent transgene expression from hepatocytes in vivo offers an alternative approach to current ex vivo and in vivo gene-transfer models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report that promoters for two murine acute-phase protein (APP) genes, complement factor 3 (C3) and serum amyloid A3 (SAA3), can increase recombinant protein expression in response to inflammatory stimuli in vivo. To deliver APP promoter-luciferase reporter gene constructs to the liver, where most endogenous APP synthesis occurs, we introduced them into a nonreplicating adenovirus vector and injected the purified viruses intravenously into mice. When compared with the low levels of basal luciferase expression observed prior to inflammatory challenge, markedly increased expression from the C3 promoter was detected in liver in response to both lipopolysaccharide (LPS) and turpentine, and lower-level inducible expression was also found in lung. In contrast, expression from the SAA3 promoter was found only in liver and was much more responsive to LPS than to turpentine. After LPS challenge, hepatic luciferase expression increased rapidly and in proportion to the LPS dose. Use of cytokine-inducible promoters in gene transfer vectors may make it possible to produce antiinflammatory proteins in vivo in direct relationship to the intensity and duration of an individual's inflammatory response. By providing endogenously controlled production of recombinant antiinflammatory proteins, this approach might limit the severity of the inflammatory response without interfering with the beneficial components of host defense and immunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a simple, rapid procedure for reconstitution of Escherichia coli RNA polymerase holoenzyme (RNAP) from individual recombinant alpha, beta, beta', and sigma 70 subunits. Hexahistidine-tagged recombinant alpha subunit purified by batch-mode metal-ion-affinity chromatography is incubated with crude recombinant beta, beta', and sigma 70 subunits from inclusion bodies, and the resulting reconstituted recombinant RNAP is purified by batch-mode metal-ion-affinity chromatography. RNAP prepared by this procedure is indistinguishable from RNAP prepared by conventional methods with respect to subunit stoichiometry, alpha-DNA interaction, catabolite gene activator protein (CAP)-independent transcription, and CAP-dependent transcription. Experiments with alpha (1-235), an alpha subunit C-terminal deletion mutant, establish that the procedure is suitable for biochemical screening of subunit lethal mutants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cDNA corresponding to a putative phosphatidylinositol-specific phospholipase C (PI-PLC) in the higher plant Arabidopsis thaliana was cloned by use of the polymerase chain reaction. The cDNA, designated cAtPLC1, encodes a putative polypeptide of 561 aa with a calculated molecular mass of 64 kDa. The putative product includes so-called X and Y domains found in all PI-PLCs identified to date. In mammalian cells, there are three types of PI-PLC, PLC-beta, -gamma, and -delta. The overall structure of the putative AtPLC1 protein is most similar to that of PLC-delta, although the AtPLC1 protein is much smaller than PLCs from other organisms. The recombinant AtPLC1 protein synthesized in Escherichia coli was able to hydrolyze phosphatidylinositol 4,5-bisphosphate and this activity was completely dependent on Ca2+, as observed also for mammalian PI-PLCs. These results suggest that the AtPLC1 gene encodes a genuine PI-PLC of a higher plant. Northern blot analysis showed that the AtPLC1 gene is expressed at very low levels in the plant under normal conditions but is induced to a significant extent under various environmental stresses, such as dehydration, salinity, and low temperature. These observations suggest that AtPLC1 might be involved in the signal-transduction pathways of environmental stresses and that an increase in the level of AtPLC1 might amplify the signal, in a manner that contributes to the adaptation of the plant to these stresses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type 1 diabetes mellitus is caused by severe insulin deficiency secondary to the autoimmune destruction of pancreatic beta cells. Patients need to be controlled by periodic insulin injections to prevent the development of ketoacidosis, which can be fatal. Sustained, low-level expression of the rat insulin 1 gene from the liver of severely diabetic rats was achieved by in vivo administration of a recombinant retroviral vector. Ketoacidosis was prevented and the treated animals exhibited normoglycemia during a 24-hr fast, with no evidence of hypoglycemia. Histopathological examination of the liver in the treated animals showed no apparent abnormalities. Thus, the liver is an excellent target organ for ectopic expression of the insulin gene as a potential treatment modality for type 1 diabetes mellitus by gene therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficacy of combination therapy with a "suicide gene" and a cytokine gene to treat metastatic colon carcinoma in the liver was investigated. Tumor in the liver was generated by intrahepatic injection of a colon carcinoma cell line (MCA-26) in syngeneic BALB/c mice. Recombinant adenoviral vectors containing various control and therapeutic genes were injected directly into the solid tumors, followed by treatment with ganciclovir. While the tumors continued to grow in all animals treated with a control vector or a mouse interleukin 2 vector, those treated with a herpes simplex virus thymidine kinase vector, with or without the coadministration of the mouse interleukin 2 vector, exhibited dramatic necrosis and regression. However, only animals treated with both vectors developed an effective systemic antitumoral immunity against challenges of tumorigenic doses of parental tumor cells inoculated at distant sites. The antitumoral immunity was associated with the presence of MCA-26 tumor-specific cytolytic CD8+ T lymphocytes. The results suggest that combination suicide and cytokine gene therapy in vivo can be a powerful approach for treatment of metastatic colon carcinoma in the liver.