79 resultados para Excision
Resumo:
Using a cell-free system for UV mutagenesis, we have previously demonstrated the existence of a mutagenic pathway associated with nucleotide-excision repair gaps. Here, we report that this pathway can be reconstituted by using six purified proteins: UvrA, UvrB, UvrC, DNA helicase II, DNA polymerase III core, and DNA ligase. This establishes the minimal requirements for repair-gap UV mutagenesis. DNA polymerase II could replace DNA polymerase III, although less effectively, whereas DNA polymerase I, the major repair polymerase, could not. DNA sequence analysis of mutations generated in the in vitro reaction revealed a spectrum typical of mutations targeted to UV lesions. These observations suggest that repair-gap UV mutagenesis is performed by DNA polymerase III, and to a lesser extent by DNA polymerase II, by filling-in of a rare class of excision gaps that contain UV lesions.
Resumo:
We report several classes of human interspersed repeats that resemble fossils of DNA transposons, elements that move by excision and reintegration in the genome, whereas previously characterized mammalian repeats all appear to have accumulated by retrotransposition, which involves an RNA intermediate. The human genome contains at least 14 families and > 100,000 degenerate copies of short (180-1200 bp) elements that have 14- to 25-bp terminal inverted repeats and are flanked by either 8 bp or TA target site duplications. We describe two ancient 2.5-kb elements with coding capacity, Tigger1 and -2, that closely resemble pogo, a DNA transposon in Drosophila, and probably were responsible for the distribution of some of the short elements. The deduced pogo and Tigger proteins are related to products of five DNA transposons found in fungi and nematodes, and more distantly, to the Tc1 and mariner transposases. They also are very similar to the major mammalian centromere protein CENP-B, suggesting that this may have a transposase origin. We further identified relatively low-copy-number mariner elements in both human and sheep DNA. These belong to two subfamilies previously identified in insect genomes, suggesting lateral transfer between diverse species.
Resumo:
Saccharomyces cerevisiae responds to DNA damage by arresting cell cycle progression (thereby preventing the replication and segregation of damaged chromosomes) and by inducing the expression of numerous genes, some of which are involved in DNA repair, DNA replication, and DNA metabolism. Induction of the S. cerevisiae 3-methyladenine DNA glycosylase repair gene (MAG) by DNA-damaging agents requires one upstream activating sequence (UAS) and two upstream repressing sequences (URS1 and URS2) in the MAG promoter. Sequences similar to the MAG URS elements are present in at least 11 other S. cerevisiae DNA repair and metabolism genes. Replication protein A (Rpa) is known as a single-stranded-DNA-binding protein that is involved in the initiation and elongation steps of DNA replication, nucleotide excision repair, and homologous recombination. We now show that the MAG URS1 and URS2 elements form similar double-stranded, sequence-specific, DNA-protein complexes and that both complexes contain Rpa. Moreover, Rpa appears to bind the MAG URS1-like elements found upstream of 11 other DNA repair and DNA metabolism genes. These results lead us to hypothesize that Rpa may be involved in the regulation of a number of DNA repair and DNA metabolism genes.
Resumo:
The DNA in a germ-line nucleus (a micronucleus) undergoes extensive processing when it develops into a somatic nucleus (a macronucleus) after cell mating in hypotrichous ciliates. Processing includes destruction of a large amount of spacer DNA between genes and excision of gene-sized molecules from chromosomes. Before processing, micronuclear genes are interrupted by numerous noncoding segments called internal eliminated sequences (IESs). The IESs are excised and destroyed, and the retained macro-nuclear-destined sequences (MDSs) are spliced. MDSs in some micronuclear genes are not in proper order and must be reordered during processing to create functional gene-sized molecules for the macronucleus. Here we report that the micronuclear actin I gene in Oxytricha trifallax WR consists of 10 MDSs and 9 IESs compared to the previously reported 9 MDSs and 8 IESs in the micronuclear actin I gene of Oxytricha nova. The MDSs in the actin I gene are scrambled in a similar pattern in the two species, but the positions of MDS-IES junctions are shifted by up to 14 bp for scrambled and 138 bp for the nonscrambled MDSs. The shifts in MDS-IES junctions create differences in the repeat sequences that are believed to guide MDS splicing. Also, the sizes and sequences of IESs in the micronuclear actin I genes are different in the two Oxytricha species. These observations give insight about the possible origins of IES insertion and MDS scrambling in evolution and show the extraordinary malleability of the germ-line DNA in hypotrichs.