186 resultados para Dna-repair


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe a fluorescence-based directed termination PCR (fluorescent DT–PCR) that allows accurate determination of actual sequence changes without dideoxy DNA sequencing. This is achieved using near infrared dye-labeled primers and performing two PCR reactions under low and unbalanced dNTP concentrations. Visualization of resulting termination fragments is accomplished with a dual dye Li-cor DNA sequencer. As each DT–PCR reaction generates two sets of terminating fragments, a pair of complementary reactions with limiting dATP and dCTP collectively provide information on the entire sequence of a target DNA, allowing an accurate determination of any base change. Blind analysis of 78 mutants of the supF reporter gene using fluorescent DT–PCR not only correctly determined the nature and position of all types of substitution mutations in the supF gene, but also allowed rapid scanning of the signature sequences among identical mutations. The method provides simplicity in the generation of terminating fragments and 100% accuracy in mutation characterization. Fluorescent DT–PCR was successfully used to generate a UV-induced spectrum of mutations in the supF gene following replication on a single plate of human DNA repair-deficient cells. We anticipate that the automated DT–PCR method will serve as a cost-effective alternative to dideoxy sequencing in studies involving large-scale analysis for nucleotide sequence changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Escherichia coli DNA repair enzyme MutY plays an important role in the prevention of DNA mutations by removing misincorporated adenine residues from 7,8-dihydro-8-oxo-2′-deoxyguanosine:2′-deoxyadenosine (OG:A) mispairs. The N-terminal domain of MutY (Stop 225, Met1–Lys225) has a sequence and structure that is characteristic of a superfamily of base excision repair glycosylases; however, MutY and its homologs contain a unique C-terminal domain. Previous studies have shown that the C-terminal domain confers specificity for OG:A substrates over G:A substrates and exhibits homology to the d(OG)TPase MutT, suggesting a role in OG recognition. In order to provide additional information on the importance of the C-terminal domain in damage recognition, we have investigated the kinetic properties of a form lacking this domain (Stop 225) under multiple- and single-turnover conditions. In addition, the interaction of Stop 225 with a series of non-cleavable substrate and product analogs was evaluated using gel retardation assays and footprinting experiments. Under multiple-turnover conditions Stop 225 exhibits biphasic kinetic behavior with both OG:A and G:A substrates, likely due to rate-limiting DNA product release. However, the rate of turnover of Stop 225 was increased 2-fold with OG:A substrates compared to the wild-type enzyme. In contrast, the intrinsic rate for adenine removal by Stop 225 from both G:A and OG:A substrates is significantly reduced (10- to 25-fold) compared to the wild-type. The affinity of Stop 225 for substrate analogs was dramatically reduced, as was the ability to discriminate between substrate analogs paired with OG over G. Interestingly, similar hydroxyl radical and DMS footprinting patterns are observed for Stop 225 and wild-type MutY bound to DNA duplexes containing OG opposite an abasic site mimic or a non-hydrogen bonding A analog, suggesting that similar regions of the DNA are contacted by both enzyme forms. Importantly, Stop 225 has a reduced ability to prevent DNA mutations in vivo. This implies that the reduced adenine glycosylase activity translates to a reduced capacity of Stop 225 to prevent DNA mutations in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BRCA1 and BRCA2 carriers are at increased risk for both breast and ovarian cancer, but estimates of lifetime risk vary widely, suggesting their penetrance is modified by other genetic and/or environmental factors. The BRCA1 and BRCA2 proteins function in DNA repair in conjunction with RAD51. A preliminary report suggested that a single nucleotide polymorphism in the 5′ untranslated region of RAD51 (135C/G) increases breast cancer risk in BRCA1 and BRCA2 carriers. To investigate this effect we studied 257 female Ashkenazi Jewish carriers of one of the common BRCA1 (185delAG, 5382insC) or BRCA2 (6174delT) mutations. Of this group, 164 were affected with breast and/or ovarian cancer and 93 were unaffected. RAD51 genotyping was performed on all subjects. Among BRCA1 carriers, RAD51-135C frequency was similar in healthy and affected women [6.1% (3 of 49) and 9.9% (12 of 121), respectively], and RAD-135C did not influence age of cancer diagnosis [Hazard ratio (HR) = 1.18 for disease in RAD51-135C heterozygotes, not significant]. However, in BRCA2 carriers, RAD51-135C heterozygote frequency in affected women was 17.4% (8 of 46) compared with 4.9% (2 of 41) in unaffected women (P = 0.07). Survival analysis in BRCA2 carriers showed RAD51-135C increased risk of breast and/or ovarian cancer with an HR of 4.0 [95% confidence interval 1.6–9.8, P = 0.003]. This effect was largely due to increased breast cancer risk with an HR of 3.46 (95% confidence interval 1.3–9.2, P = 0.01) for breast cancer in BRCA2 carriers who were RAD51-135C heterozygotes. RAD51 status did not affect ovarian cancer risk. These results show RAD51-135C is a clinically significant modifier of BRCA2 penetrance, specifically in raising breast cancer risk at younger ages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Defects in the XPG DNA repair endonuclease gene can result in the cancer-prone disorders xeroderma pigmentosum (XP) or the XP–Cockayne syndrome complex. While the XPG cDNA sequence was known, determination of the genomic sequence was required to understand its different functions. In cells from normal donors, we found that the genomic sequence of the human XPG gene spans 30 kb, contains 15 exons that range from 61 to 1074 bp and 14 introns that range from 250 to 5763 bp. Analysis of the splice donor and acceptor sites using an information theory-based approach revealed three splice sites with low information content, which are components of the minor (U12) spliceosome. We identified six alternatively spliced XPG mRNA isoforms in cells from normal donors and from XPG patients: partial deletion of exon 8, partial retention of intron 8, two with alternative exons (in introns 1 and 6) and two that retained complete introns (introns 3 and 9). The amount of alternatively spliced XPG mRNA isoforms varied in different tissues. Most alternative splice donor and acceptor sites had a relatively high information content, but one has the U12 spliceosome sequence. A single nucleotide polymorphism has allele frequencies of 0.74 for 3507G and 0.26 for 3507C in 91 donors. The human XPG gene contains multiple splice sites with low information content in association with multiple alternatively spliced isoforms of XPG mRNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BRCA1 is a breast and ovarian cancer-specific tumor suppressor that seems to be involved in transcription and DNA repair. Here we report that BRCA1 exhibits a bona fide ubiquitin (Ub) protein ligase (E3) activity, and that cancer-predisposing mutations within the BRCA1 RING domain abolish its Ub ligase activity. Furthermore, these mutants are unable to reverse γ-radiation hypersensitivity of BRCA1-null human breast cancer cells, HCC1937. Additionally, these mutations within the BRCA1 RING domain are not capable of restoring a G2 + M checkpoint in HCC1937 cells. These results establish a link between Ub protein ligase activity and γ-radiation protection function of BRCA1, and provide an explanation for why mutations within the BRCA1 RING domain predispose to cancer. Furthermore, we propose that the analysis of the Ub ligase activity of RING-domain mutations identified in patients may constitute an assay to predict predisposition to cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predicted highly expressed (PHX) and putative alien genes determined by codon usages are characterized in the genome of Deinococcus radiodurans (strain R1). Deinococcus radiodurans (DEIRA) can survive very high doses of ionizing radiation that are lethal to virtually all other organisms. It has been argued that DEIRA is endowed with enhanced repair systems that provide protection and stability. However, predicted expression levels of DNA repair proteins with the exception of RecA tend to be low and do not distinguish DEIRA from other prokaryotes. In this paper, the capability of DEIRA to resist extreme doses of ionizing and UV radiation is attributed to an unusually high number of PHX chaperone/degradation, protease, and detoxification genes. Explicitly, compared with all current complete prokaryotic genomes, DEIRA contains the greatest number of PHX detoxification and protease proteins. Other sources of environmental protection against severe conditions of UV radiation, desiccation, and thermal effects for DEIRA are the several S-layer (surface structure) PHX proteins. The top PHX gene of DEIRA is the multifunctional tricarboxylic acid (TCA) gene aconitase, which, apart from its role in respiration, also alerts the cell to oxidative damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BIMD of Aspergillus nidulans belongs to a highly conserved protein family implicated, in filamentous fungi, in sister-chromatid cohesion and DNA repair. We show here that BIMD is chromosome associated at all stages, except from late prophase through anaphase, during mitosis and meiosis, and is involved in several aspects of both programs. First, bimD+ function must be executed during S through M. Second, in bimD6 germlings, mitotic nuclear divisions and overall cellular program occur more rapidly than in wild type. Thus, BIMD, an abundant chromosomal protein, is a negative regulator of normal cell cycle progression. Third, bimD6 reduces the level of mitotic interhomolog recombination but does not alter the ratio between crossover and noncrossover outcomes. Moreover, bimD6 is normal for intrachromosomal recombination. Therefore, BIMD is probably not involved in the enzymology of recombinational repair per se. Finally, during meiosis, staining of the Sordaria ortholog Spo76p delineates robust chromosomal axes, whereas BIMD stains all chromatin. SPO76 and bimD are functional homologs with respect to their roles in mitotic chromosome metabolism but not in meiosis. We propose that BIMD exerts its diverse influences on cell cycle progression as well as chromosome morphogenesis and recombination by modulating chromosome structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genome of the crenarchaeon Sulfolobus solfataricus P2 contains 2,992,245 bp on a single chromosome and encodes 2,977 proteins and many RNAs. One-third of the encoded proteins have no detectable homologs in other sequenced genomes. Moreover, 40% appear to be archaeal-specific, and only 12% and 2.3% are shared exclusively with bacteria and eukarya, respectively. The genome shows a high level of plasticity with 200 diverse insertion sequence elements, many putative nonautonomous mobile elements, and evidence of integrase-mediated insertion events. There are also long clusters of regularly spaced tandem repeats. Different transfer systems are used for the uptake of inorganic and organic solutes, and a wealth of intracellular and extracellular proteases, sugar, and sulfur metabolizing enzymes are encoded, as well as enzymes of the central metabolic pathways and motility proteins. The major metabolic electron carrier is not NADH as in bacteria and eukarya but probably ferredoxin. The essential components required for DNA replication, DNA repair and recombination, the cell cycle, transcriptional initiation and translation, but not DNA folding, show a strong eukaryal character with many archaeal-specific features. The results illustrate major differences between crenarchaea and euryarchaea, especially for their DNA replication mechanism and cell cycle processes and their translational apparatus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structural maintenance of chromosomes (SMC) protein encoded by the fission yeast rad18 gene is involved in several DNA repair processes and has an essential function in DNA replication and mitotic control. It has a heterodimeric partner SMC protein, Spr18, with which it forms the core of a multiprotein complex. We have now isolated the human orthologues of rad18 and spr18 and designated them hSMC6 and hSMC5. Both proteins are about 1100 amino acids in length and are 27–28% identical to their fission yeast orthologues, with much greater identity within their N- and C-terminal globular domains. The hSMC6 and hSMC5 proteins interact to form a tight complex analogous to the yeast Rad18/Spr18 heterodimer. In proliferating human cells the proteins are bound to both chromatin and the nucleoskeleton. In addition, we have detected a phosphorylated form of hSMC6 that localizes to interchromatin granule clusters. Both the total level of hSMC6 and its phosphorylated form remain constant through the cell cycle. Both hSMC5 and hSMC6 proteins are expressed at extremely high levels in the testis and associate with the sex chromosomes in the late stages of meiotic prophase, suggesting a possible role for these proteins in meiosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For several decades, research into the mechanisms of genetic recombination proceeded without a complete understanding of its cellular function or its place in DNA metabolism. Many lines of research recently have coalesced to reveal a thorough integration of most aspects of DNA metabolism, including recombination. In bacteria, the primary function of homologous genetic recombination is the repair of stalled or collapsed replication forks. Recombinational DNA repair of replication forks is a surprisingly common process, even under normal growth conditions. The new results feature multiple pathways for repair and the involvement of many enzymatic systems. The long-recognized integration of replication and recombination in the DNA metabolism of bacteriophage T4 has moved into the spotlight with its clear mechanistic precedents. In eukaryotes, a similar integration of replication and recombination is seen in meiotic recombination as well as in the repair of replication forks and double-strand breaks generated by environmental abuse. Basic mechanisms for replication fork repair can now inform continued research into other aspects of recombination. This overview attempts to trace the history of the search for recombination function in bacteria and their bacteriophages, as well as some of the parallel paths taken in eukaryotic recombination research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carriers of BRCA2 germline mutations are at high risk to develop early-onset breast cancer. The underlying mechanisms of how BRCA2 inactivation predisposes to malignant transformation have not been established. Here, we provide direct functional evidence that human BRCA2 promotes homologous recombination (HR), which comprises one major pathway of DNA double-strand break repair. We found that up-regulated HR after transfection of wild-type (wt) BRCA2 into a human tumor line with mutant BRCA2 was linked to increased radioresistance. In addition, BRCA2-mediated enhancement of HR depended on the interaction with Rad51. In contrast to the tumor suppressor BRCA1, which is involved in multiple DNA repair pathways, BRCA2 status had no impact on the other principal double-strand break repair pathway, nonhomologous end joining. Thus, there exists a specific regulation of HR by BRCA2, which may function to maintain genomic integrity and suppress tumor development in proliferating cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA damage-inducible mutagenesis in Escherichia coli is largely dependent upon the activity of the UmuD (UmuD') and UmuC proteins. The intracellular level of these proteins is tightly regulated at both the transcriptional and the posttranslational levels. Such regulation presumably allows cells to deal with DNA damage via error-free repair pathways before being committed to error-prone pathways. We have recently discovered that as part of this elaborate regulation, both the UmuD and the UmuC proteins are rapidly degraded in vivo. We report here that the enzyme responsible for their degradation is the ATP-dependent serine protease, Lon. In contrast, UmuD' (the posttranslational product and mutagenically active form of UmuD) is degraded at a much reduced rate by Lon, but is instead rapidly degraded by another ATP-dependent protease, ClpXP. Interestingly, UmuD' is rapidly degraded by ClpXP only when it is in a heterodimeric complex with UmuD. Formation of UmuD/UmuD' heterodimers in preference to UmuD' homodimers therefore targets UmuD' protein for proteolysis. Such a mechanism allows cells to reduce the intracellular levels of the mutagenically active Umu proteins and thereby return to a resting state once error-prone DNA repair has occurred. The apparent half-life of the heterodimeric UmuD/D' complex is greatly increased in the clpX::Kan and clpP::Kan strains and these strains are correspondingly rendered virtually UV non-mutable. We believe that these phenotypes are consistent with the suggestion that while the UmuD/D' heterodimer is mutagenically inactive, it still retains the ability to interact with UmuC, and thereby precludes the formation of the mutagenically active UmuD'2C complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystal structures of the catalytic fragment of chicken poly(ADP-ribose) polymerase [NAD+ ADP-ribosyltransferase; NAD+:poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyltransferase, EC 2.4.2.30] with and without a nicotinamide-analogue inhibitor have been elucidated. Because this enzyme is involved in the regulation of DNA repair, its inhibitors are of interest for cancer therapy. The inhibitor shows the nicotinamide site and also suggests the adenosine site. The enzyme is structurally related to bacterial ADP-ribosylating toxins but contains an additional alpha-helical domain that is suggested to relay the activation signal issued on binding to damaged DNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mouse Rad51 gene is a mammalian homologue of the Escherichia coli recA and yeast RAD51 genes, both of which are involved in homologous recombination and DNA repair. To elucidate the physiological role of RAD51 protein, the gene was targeted in embryonic stem (ES) cells. Mice heterozygous for the Rad51 null mutation were intercrossed and their offspring were genotyped. There were no homozygous (Rad51-/-) pups among 148 neonates examined but a few Rad51-/- embryos were identified when examined during the early stages of embryonic development. Doubly knocked-out ES cells were not detected under conditions of selective growth. These results are interpreted to mean that RAD51 protein plays an essential role in the proliferation of cell. The homozygous Rad51 null mutation can be categorized in cell-autonomous defects. Pre-implantational lethal mutations that disrupt basic molecular functions will thus interfere with cell viability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transcription factor IIH (TFIIH) is a multisubunit protein complex essential for both the initiation of RNA polymerase class II (pol II)-catalyzed transcription and nucleotide excision repair of DNA. Recent studies have shown that TFIIH copurifies with the cyclin-dependent kinase (cdk)-activating kinase complex (CAK) that includes cdk7, cyclin H, and p36/MAT1. Here we report the isolation of two TFIIH-related complexes: TFIIH* and ERCC2/CAK. TFIIH* consists of a subset of the TFIIH complex proteins including ERCC3 (XPB), p62, p44, p41, and p34 but is devoid of detectable levels of ERCC2 (XPD) and CAK. ERCC2/CAK was isolated as a complex that exhibits CAK activity that cosediments with the three CAK components (cdk7, cyclin H, and p36/MAT1) as well as the ERCC2 (XPD) protein. TFIIH* can support pol II-catalyzed transcription in vitro with lower efficiency compared with TFIIH. This TFIIH*-dependent transcription reaction was stimulated by ERCC2/CAK. The ERCC2/CAK and TFIIH* complexes are each active in DNA repair as shown by their ability to complement extracts prepared from ERCC2 (XPD)- and ERCC3 (XPB)-deficient cells, respectively, in supporting the excision of DNA containing a cholesterol lesion. These data suggest that TFIIH* and ERCC2/CAK interact to form the TFIIH holoenzyme capable of efficiently assembling the pol II transcription initiation complex and directly participating in excision repair reactions.