88 resultados para CCCH type zinc finger


Relevância:

100.00% 100.00%

Publicador:

Resumo:

NGFI-A (also called Egr1, Zif268, or Krox24) and the closely related proteins Krox20, NGFI-C, and Egr3 are zinc-finger transcription factors encoded by immediate-early genes which are induced by a wide variety of extracellular stimuli. NGFI-A has been implicated in cell proliferation, macrophage differentiation, synaptic activation, and long-term potentiation, whereas Krox20 is critical for proper hindbrain segmentation and peripheral nerve myelination. In previous work, a structure/function analysis of NGFI-A revealed a 34-aa inhibitory domain that was hypothesized to be the target of a cellular factor that represses NGFI-A transcriptional activity. Using the yeast two-hybrid system, we have isolated a cDNA clone which encodes a protein that interacts with this inhibitory domain and inhibits the ability of NGFI-A to activate transcription. This NGFI-A-binding protein, NAB1, is a 570-aa nuclear protein that bears no obvious sequence homology to known proteins. NAB1 also represses Krox20 activity, but it does not influence Egr3 or NGFI-G, thus providing a mechanism for the differential regulation of this family of immediate-early transcription factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

WT1, the Wilms tumor-suppressor gene, maps to the human chromosomal region 11p13 and encodes a transcriptional repressor, WT1, implicated in controlling normal urogenital development. Microinjection of the WT1 cDNA into quiescent cells or cells in early to mid G1 phase blocked serum-induced cell cycle progression into S phase. The activity of WT1 varied significantly depending on the presence or absence of an alternatively spliced region located upstream of the zinc finger domain. The inhibitory activity of WT1 was abrogated by the overexpression of cyclin E/CDK2 as well as cyclin D1/CDK4. Furthermore, both CDK4- and CDK2-associated kinase activities were downregulated in cells overexpressing WT1, whereas the levels of CDK4, CDK2, and cyclin D1 expression were unchanged. These findings suggest that inhibition of the activity of cyclin/CDK complexes may be involved in mediating the WT1-induced cell cycle block.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SSN6-TUP1 protein complex represses transcription of diversely regulated genes in the yeast Saccharomyces cerevisiae. Here we present evidence that MIG1, a zinc-finger protein in the EGR1/Zif268 family, recruits SSN6-TUP1 to glucose-repressed promoters. DNA-bound LexA-MIG1 represses transcription of a target gene in glucose-grown cells, and repression requires SSN6 and TUP1. We also show that MIG1 and SSN6 fusion proteins interact in the two-hybrid system. Unexpectedly, we found that LexA-MIG1 activates transcription strongly in an ssn6 mutant and weakly in a tup1 mutant. Finally, LexA-MIG1 does not repress transcription in glucose-deprived cells, and MIG1 is differentially phosphorylated in response to glucose availability. We suggest a role for phosphorylation in regulating repression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first Zn(II)-translocating P-type ATPase has been identified as the product of o732, a potential gene identified in the sequencing of the Escherichia coli genome. This gene, termed zntA, was disrupted by insertion of a kanamycin gene through homologous recombination. The mutant strain exhibited hypersensitivity to zinc and cadmium salts but not salts of other metals, suggesting a role in zinc homeostasis in E. coli. Everted membrane vesicles from a wild-type strain accumulated 65Zn(II) and 109Cd(II) by using ATP as an energy source. Transport was sensitive to vanadate, an inhibitor of P-type ATPases. Membrane vesicles from the zntA∷kan strain did not accumulate those metal ions. Both the sensitive phenotype and transport defect of the mutant were complemented by expression of zntA on a plasmid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Members of the transforming growth factor-β (TGF-β) superfamily signal through heteromeric type I and type II serine/threonine kinase receptors. Transgenic mice that overexpress a dominant-negative mutation of the TGF-β type II receptor (DNIIR) under the control of a metallothionein-derived promoter (MT-DNIIR) were used to determine the role of endogenous TGF-βs in the developing mammary gland. The expression of the dominant-negative receptor was induced with zinc and was primarily localized to the stroma underlying the ductal epithelium in the mammary glands of virgin transgenic mice from two separate mouse lines. In MT-DNIIR virgin females treated with zinc, there was an increase in lateral branching of the ductal epithelium. We tested the hypothesis that expression of the dominant-negative receptor may alter expression of genes that are expressed in the stroma and regulated by TGF-βs, potentially resulting in the increased lateral branching seen in the MT-DNIIR mammary glands. The expression of hepatocyte growth factor mRNA was increased in mammary glands from transgenic animals relative to the wild-type controls, suggesting that this factor may play a role in TGF-β-mediated regulation of lateral branching. Loss of responsiveness to TGF-βs in the mammary stroma resulted in increased branching in mammary epithelium, suggesting that TGF-βs play an important role in the stromal–epithelial interactions required for branching morphogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein transport to the lysosome-like vacuole in yeast is mediated by multiple pathways, including the biosynthetic routes for vacuolar hydrolases, the endocytic pathway, and autophagy. Among the more than 40 genes required for vacuolar protein sorting (VPS) in Saccharomyces cerevisiae, mutations in the four class C VPS genes result in the most severe vacuolar protein sorting and morphology defects. Herein, we provide complementary genetic and biochemical evidence that the class C VPS gene products (Vps18p, Vps11p, Vps16p, and Vps33p) physically and functionally interact to mediate a late step in protein transport to the vacuole. Chemical cross-linking experiments demonstrated that Vps11p and Vps18p, which both contain RING finger zinc-binding domains, are components of a hetero-oligomeric protein complex that includes Vps16p and the Sec1p homologue Vps33p. The class C Vps protein complex colocalized with vacuolar membranes and a distinct dense membrane fraction. Analysis of cells harboring a temperature-conditional vps18 allele (vps18tsf) indicated that Vps18p function is required for the biosynthetic, endocytic, and autophagic protein transport pathways to the vacuole. In addition, vps18tsf cells accumulated multivesicular bodies, autophagosomes, and other membrane compartments that appear to represent blocked transport intermediates. Overproduction of either Vps16p or the vacuolar syntaxin homologue Vam3p suppressed defects associated with vps18tsf mutant cells, indicating that the class C Vps proteins and Vam3p may functionally interact. Thus we propose that the class C Vps proteins are components of a hetero-oligomeric protein complex that mediates the delivery of multiple transport intermediates to the vacuole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ORF slr0798, now designated ziaA, from Synechocystis PCC 6803 encodes a polypeptide with sequence features of heavy metal transporting P-type ATPases. Increased Zn2+ tolerance and reduced 65Zn accumulation was observed in Synechococcus PCC 7942, strain R2-PIM8(smt), containing ziaA and upstream regulatory sequences, compared with control cells. Conversely, reduced Zn2+ tolerance was observed following disruption of ziaA in Synechocystis PCC 6803, and ziaA-mediated restoration of Zn2+ tolerance has subsequently been used as a selectable marker for transformation. Nucleotide sequences upstream of ziaA, fused to a promoterless lacZ gene, conferred Zn2+-dependent β-galactosidase activity when introduced into R2-PIM8(smt). The product of ORF sll0792, designated ZiaR, is a Zn2+-responsive repressor of ziaA transcription. Reporter gene constructs lacking ziaR conferred elevated Zn2+-independent expression from the ziaA operator–promoter in R2-PIM8(smt). Gel retardation assays detected ZiaR-dependent complexes forming with the zia operator–promoter and ZiaR–DNA binding was enhanced by treatment with a metal-chelator in vitro. Two mutants of ZiaR (C71S/C73S and H116R) bound to, and repressed expression from, the ziaA operator–promoter but were unable to sense Zn2+. Metal coordination to His-imidazole and Cys-thiolate ligands at these residues of ZiaR is thus implicated in Zn2+-perception by Synechocystis PCC 6803.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the isolation of an Arabidopsis gene that is closely related to the animal ZnT genes (Zn transporter). The protein encoded by the ZAT (Zn transporter of Arabidopsis thaliana) gene has 398 amino acid residues and is predicted to have six membrane-spanning domains. To obtain evidence for the postulated function of the Arabidopsis gene, transgenic plants with the ZAT coding sequence under control of the cauliflower mosaic virus 35S promoter were analyzed. Plants obtained with ZAT in the sense orientation exhibited enhanced Zn resistance and strongly increased Zn content in the roots under high Zn exposure. Antisense mRNA-producing plants were viable, with a wild-type level of Zn resistance and content, like plants expressing a truncated coding sequence lacking the C-terminal cytoplasmic domain of the protein. The availability of ZAT can lead to a better understanding of the mechanism of Zn homeostasis and resistance in plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of mutant human and yeast copper-zinc superoxide dismutases has been prepared, with mutations corresponding to those found in familial amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease). These proteins have been characterized with respect to their metal-binding characteristics and their redox reactivities. Replacement of Zn2+ ion in the zinc sites of several of these proteins with either Cu2+ or Co2+ gave metal-substituted derivatives with spectroscopic properties different from those of the analogous derivative of the wild-type proteins, indicating that the geometries of binding of these metal ions to the zinc site were affected by the mutations. Several of the ALS-associated mutant copper-zinc superoxide dismutases were also found to be reduced by ascorbate at significantly greater rate than the wild-type proteins. We conclude that similar alterations in the properties of the zinc binding site can be caused by mutations scattered throughout the protein structure. This finding may help to explain what is perhaps the most perplexing question in copper-zinc superoxide dismutase-associated familial ALS-i.e., how such a diverse set of mutations can result in the same gain of function that causes the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signals emanating from CD40 play crucial roles in B-cell function. To identify molecules that transduce CD40 signalings, we have used the yeast two-hybrid system to done cDNAs encoding proteins that bind the cytoplasmic tail of CD40. A cDNA encoding a putative signal transducer protein, designated TRAF5, has been molecularly cloned. TRAF5 has a tumor necrosis factor receptor-associated factor (TRAF) domain in its carboxyl terminus and is most homologous to TRAF3, also known as CRAF1, CD40bp, or LAP-1, a previously identified CD40-associated factor. The amino terminus has a RING finger domain, a cluster of zinc fingers and a coiled-coil domain, which are also present in other members of the TRAF family protein except for TRAF1. In vitro binding assays revealed that TRAF5 associates with the cytoplasmic tail of CD40, but not with the cytoplasmic tail of tumor receptor factor receptor type 2, which associates with TRAF2. Based on analysis of the association between TRAF5 and various CD40 mutants, residues 230-269 of CD40 are required for the association with TRAF5. In contrast to TRAF3, overexpression of TRAF5 activates transcription factor nuclear factor kappa B. Furthermore, amino-terminally truncated forms of TRAF5 suppress the CD40-mediated induction of CD23 expression, as is the case with TRAF3. These results suggest that TRAF5 and TRAF3 could be involved in both common and distinct signaling pathways emanating from CD40.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Drosophila CF2II protein, which contains zinc fingers of the Cys2His2 type and recognizes an A+T-rich sequence, behaves in cell culture as an activator of a reporter chloramphenicol acetyltransferase gene. This activity depends on C-terminal but not N-terminal zinc fingers, as does in vitro DNA binding. By site-specific mutagenesis and binding site selection, we define the critical amino acid-base interactions. Mutations of single amino acid residues at the leading edge of the recognition helix are rarely neutral: many result in a slight change in affinity for the ideal DNA target site; some cause major loss of affinity; and others change specificity for as many as two bases in the target site. Compared to zinc fingers that recognize G+C-rich DNA, CF2II fingers appear to bind to A+T-rich DNA in a generally similar manner, but with additional flexibility and amino acid-base interactions. The results illustrate how zinc fingers may be evolving to recognize an unusually diverse set of DNA sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex which is disrupted in the APL disease state. Here, two newly defined cysteine/histidine-rich protein motifs called the B-box (B1 and B2) from PML have been characterized in terms of their effect on PML nuclear body formation, their dimerization, and their biophysical properties. We have shown that both peptides bind Zn2+, which induces changes in the peptides' structures. We demonstrate that mutants in both B1 and B2 do not form PML nuclear bodies in vivo and have a phenotype that is different from that observed in the APL disease state. Interestingly, these mutations do not affect the ability of wild-type PML to dimerize with mutant proteins in vitro, suggesting that the B1 and B2 domains are involved in an additional interaction central to PML nuclear body formation. This report in conjunction with our previous work demonstrates that the PML RING-Bl/B2 motif plays a fundamental role in formation of a large multiprotein complex, a function that may be common to those unrelated proteins which contain the motif.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in Cu/Zn superoxide dismutase (SOD), a hallmark of familial amyotrophic lateral sclerosis (FALS) in humans, are shown here to confer striking neuropathology in Drosophila. Heterozygotes with one wild-type and one deleted SOD allele retain the expected 50% of normal activity for this dimeric enzyme. However, heterozygotes with one wild-type and one missense SOD allele show lesser SOD activities, ranging from 37% for a heterozygote carrying a missense mutation predicted from structural models to destabilize the dimer interface, to an average of 13% for several heterozygotes carrying missense mutations predicted to destabilize the subunit fold. Genetic and biochemical evidence suggests a model of dimer dysequilibrium whereby SOD activity in missense heterozygotes is reduced through entrapment of wild-type subunits into unstable or enzymatically inactive heterodimers. This dramatic impairment of the activity of wild-type subunits in vivo has implications for our understanding of FALS and for possible therapeutic strategies.