78 resultados para Alveolar type II cells (AT II)
Resumo:
Surfactant protein B (SP-B) is an 8.7-kDa, hydrophobic protein that enhances the spreading and stability of surfactant phospholipids in the alveolus. To further assess the role of SP-B in lung function, the SP-B gene was disrupted by homologous recombination in murine mouse embryonic stem cells. Mice with a single mutated SP-B allele (+/-) were unaffected, whereas homozygous SP-B -/- offspring died of respiratory failure immediately after birth. Lungs of SP-B -/- mice developed normally but remained atelectatic in spite of postnatal respiratory efforts. SP-B protein and mRNA were undetectable and tubular myelin figures were lacking in SP-B -/- mice. Type II cells of SP-B -/- mice contained no fully formed lamellar bodies. While the abundance of SP-A and SP-C mRNAs was not altered, an aberrant form of pro-SP-C, 8.5 kDa, was detected, and fully processed SP-C peptide was markedly decreased in lung homogenates of SP-B -/- mice. Ablation of the SP-B gene disrupts the routing, storage, and function of surfactant phospholipids and proteins, causing respiratory failure at birth.
Resumo:
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the posttranslational formation of 4-hydroxyproline in collagens. The vertebrate enzyme is an alpha 2 beta 2 tetramer, the beta subunit of which is a highly unusual multifunctional polypeptide, being identical to protein disulfide-isomerase (EC 5.3.4.1). We report here the cloning of a second mouse alpha subunit isoform, termed the alpha (II) subunit. This polypeptide consists of 518 aa and a signal peptide of 19 aa. The processed polypeptide is one residue longer than the mouse alpha (I) subunit (the previously known type), the cloning of which is also reported here. The overall amino acid sequence identity between the mouse alpha (II) and alpha (I) subunits is 63%. The mRNA for the alpha (II) subunit was found to be expressed in a variety of mouse tissues. When the alpha (II) subunit was expressed together with the human protein disulfide-isomerase/beta subunit in insect cells by baculovirus vectors, an active prolyl 4-hydroxylase was formed, and this protein appeared to be an alpha (II) 2 beta 2 tetramer. The activity of this enzyme was very similar to that of the human alpha (I) 2 beta 2 tetramer, and most of its catalytic properties were also highly similar, but it differed distinctly from the latter in that it was inhibited by poly(L-proline) only at very high concentrations. This property may explain why the type II enzyme was not recognized earlier, as an early step in the standard purification procedure for prolyl 4-hydroxylase is affinity chromatography on a poly(L-proline) column.
Resumo:
A peroxisomal location for insulin-degrading enzyme (IDE) has been defined by confocal immunofluorescence microscopy of stably transfected CHO cells overexpressing IDE and digitonin-permeabilization studies in normal nontransfected fibroblasts. The functional significance of IDE in degrading cleaved leader peptides of peroxisomal proteins targeted by the type II motif was evaluated with a synthetic peptide corresponding to the type II leader peptide of prethiolase. The peptide effectively competed for degradation and cross-linking of the high-affinity substrate 125I-labeled insulin to IDE. Direct proteolysis of the leader peptide of prethiolase was confirmed by HPLC; degradation was inhibited by immunodepletion with an antibody to IDE. Phylogenetic analysis of proteinases related to IDE revealed sequence similarity to mitochondrial processing peptidases.