100 resultados para viral fitness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To improve the efficiency of liposome-mediated DNA transfer as a tool for gene therapy, we have developed a fusigenic liposome vector based on principles of viral cell fusion. The fusion proteins of hemagglutinating virus of Japan (HVJ; also Sendai virus) are complexed with liposomes that encapsulate oligodeoxynucleotide or plasmid DNA. Subsequent fusion of HVJ-liposomes with plasma membranes introduces the DNA directly into the cytoplasm. In addition, a DNA-binding nuclear protein is incorporated into the HVJ-liposome particle to enhance plasmid transgene expression. The fusigenic viral liposome vector has proven to be efficient for the intracellular introduction of oligodeoxynucleotide, as well as intact genes up to 100 kbp, both in vitro and in vivo. Many animal tissues have been found to be suitable targets for fusigenic viral liposome DNA transfer. In the cardiovascular system, we have documented successful cytostatic gene therapy in models of vascular proliferative disease using antisense oligodeoxynucleotides against cell cycle genes, double-stranded oligodeoxynucleotides as "decoys" to trap the transcription factor E2F, and expression of a transgene encoding the constitutive endothelial cell form of nitric oxide synthase. Similar strategies are also effective for the genetic engineering of vein grafts and for the treatment of a mouse model of immune-mediated glomerular disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The open reading frame P (ORF P) is located in the domain and on the DNA strand of the herpes simplex virus 1 transcribed during latent infection. ORF P is not expressed in productively infected cells as a consequence of repression by the binding of the major viral regulatory protein to its high-affinity binding site. In cells infected with a mutant virus carrying a derepressed gene, ORF P protein is extensively posttranslationally processed. We report that ORF P interacts with a component of the splicing factor SF2/ASF, pulls down a component of the SM antigens, and colocalizes with splicing factors in nuclei of infected cells. The hypothesis that ORF P protein may act to regulate viral gene expression, particularly in situations such as latently infected sensory neurons in which the major regulatory protein is not expressed, is supported by the evidence that in cells infected with a mutant in which the ORF P gene was derepressed, the products of the regulatory genes alpha 0 and alpha 22 are reduced in amounts early in infection but recover late in infection. The proteins encoded by these genes are made from spliced mRNAs, and the extent of recovery of these proteins late in infection correlates with the extent of accumulation of post-translationally processed forms of ORF P protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, is a human herpesvirus associated with epithelial cell malignancies (nasopharyngeal carcinoma) as well as B-cell malignancies. Understanding how viral latency is disrupted is a central issue in herpesvirus biology. Epithelial cells are the major site of lytic EBV replication within the human host, and viral reactivation occurs in EBV-associated nasopharyngeal carcinomas. It is known that expression of a single viral immediate-early protein, BZLF1, is sufficient to initiate the switch from latent to lytic infection in B cells. Cellular regulation of BZLF1 transcription is therefore thought to play a key role in regulating the stringency of viral latency. Here we show that, unexpectedly, expression of another viral immediate-early protein, BRLF1, can disrupt viral latency in an epithelial cell-specific fashion. Therefore, the mechanisms leading to disruption of EBV latency appear to be cell-type specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-viral drug treatment of human immunodeficiency virus type I (HIV-1) and hepatitis B virus (HBV) infections causes rapid reduction in plasma virus load. Viral decline occurs in several phases and provides information on important kinetic constants of virus replication in vivo and pharmacodynamical properties. We develop a mathematical model that takes into account the intracellular phase of the viral life-cycle, defined as the time between infection of a cell and production of new virus particles. We derive analytic solutions for the dynamics following treatment with reverse transcriptase inhibitors, protease inhibitors, or a combination of both. For HIV-1, our results show that the phase of rapid decay in plasma virus (days 2-7) allows precise estimates for the turnover rate of productively infected cells. The initial quasi-stationary phase (days 0-1) and the transition phase (days 1-2) are explained by the combined effects of pharmacological and intracellular delays, the clearance of free virus particles, and the decay of infected cells. Reliable estimates of the first three quantities are not possible from data on virus load only; such estimates require additional measurements. In contrast with HIV-1, for HBV our model predicts that frequent early sampling of plasma virus will lead to reliable estimates of the free virus half-life and the pharmacological properties of the administered drug. On the other hand, for HBV the half-life of infected cells cannot be estimated from plasma virus decay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chromosomal locus required for copper resistance and competitive fitness was cloned from a strain of Pseudomonas fluorescens isolated from copper-contaminated agricultural soil. Sequence analysis of this locus revealed six open reading frames with homology to genes involved in cytochrome c biogenesis in other bacteria, helC, cycJ, cycK, tipB, cycL, and cycH, with the closest similarity being to the aeg-46.5(yej) region of the Escherichia coli chromosome. The proposed functions of these genes in other bacteria include the binding, transport, and coupling of heme to apocytochrome c in the periplasm of these Gram-negative bacteria. Putative heme-binding motifs were present in the predicted products of cycK and cycL, and TipB contained a putative disulfide oxidoreductase active site proposed to maintain the heme-binding site of the apocytochrome in a reduced state for ligation of heme. Tn3-gus mutagenesis showed that expression of the genes was constitutive but enhanced by copper, and confirmed that the genes function both in copper resistance and production of active cytochrome c. However, two mutants in cycH were copper-sensitive and oxidase-positive, suggesting that the functions of these genes, rather than cytochrome c oxidase itself, were required for resistance to copper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe molecular and clinical findings in an immunocompetent patient with an oligoastrocytoma and the concomitant presence of the human papovavirus, JC virus (JCV), which is the etiologic agent of the subacute, debilitating demyelinating disease, progressive multifocal leukoencephalopathy. Histologic review revealed a glial neoplasm consisting primarily of a moderately cellular oligodendroglioma with distinct areas of a fibrillary astrocytoma. Immunohistochemical analysis revealed nuclear staining of tumor cells with antibodies against the viral oncoprotein [tumor antigen (T antigen)], the proliferation marker (Ki67), and the cellular proliferation regulator (p53). Using primers specific to the JCV control region, PCR yielded amplified DNA that was identical to the control region of the Mad-4 strain of the virus. PCR analysis demonstrated the presence of the genome for the viral oncoprotein, T antigen, and results from primer extension studies revealed synthesis of the viral early RNA for T antigen in the tumor tissues. The presence of viral T antigen in the tumor tissue was further demonstrated by immunoblot assay. To our knowledge, this is the first report of the presence of JCV DNA, RNA, and T antigen in tissue in which viral T antigen is localized to tumor cell nuclei and suggests the possible association of JCV with some glial neoplasms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenoviral vector-mediated gene transfer offers significant potential for gene therapy of many human diseases. However, progress has been slowed by several limitations. First, the insert capacity of currently available adenoviral vectors is limited to 8 kb of foreign DNA. Second, the expression of viral proteins in infected cells is believed to trigger a cellular immune response that results in inflammation and in only transient expression of the transferred gene. We report the development of a new adenoviral vector that has all viral coding sequences removed. Thus, large inserts are accommodated and expression of all viral proteins is eliminated. The first application of this vector system carries a dual expression cassette comprising 28.2 kb of nonviral DNA that includes the full-length murine dystrophin cDNA under control of a large muscle-specific promoter and a lacZ reporter construct. Using this vector, we demonstrate independent expression of both genes in primary mdx (dystrophin-deficient) muscle cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytolytic lymphocytes are of cardinal importance in the recovery from primary viral infections. Both natural killer cells and cytolytic T cells mediate at least part of their effector function by target cell lysis and DNA fragmentation. Two proteins, perforin and granzyme B, contained within the cytoplasmic granules of these cytolytic effector cells have been shown to be directly involved in these processes. A third protein contained within these granules, granzyme A, has so far not been attributed with any biological relevance. Using mice deficient for granzyme A, we show here that granzyme A plays a crucial role in recovery from the natural mouse pathogen, ectromelia, by mechanisms other than cytolytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat shock protein gp96 primes class I restricted cytotoxic T cells against antigens present in the cells from which it was isolated. Moreover, gp96 derived from certain tumors functions as an effective vaccine, causing complete tumor regressions in in vivo tumor challenge protocols. Because tumor-derived gp96 did not differ from gp96 isolated from normal tissues, a role for gp96 as a peptide carrier has been proposed. To test this hypothesis, we analyzed whether such an association of antigenic peptides with gp96 occurs in a well-defined viral model system. Here we present the full characterization of an antigenic peptide that endogenously associates with the stress protein gp96 in cells infected with vesicular stomatitis virus (VSV). This peptide is identical to the immunodominant peptide of VSV, which is also naturally presented by H-2Kb major histocompatibility complex class I molecules. This peptide associates with gp96 in VSV-infected cells regardless of the major histocompatibility com- plex haplotype of the cell. Our observations provide a biochemical basis for the vaccine function of gp96.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis B virus (HBV) infection is thought to be controlled by virus-specific cytotoxic T lymphocytes (CTL). We have recently shown that HBV-specific CTL can abolish HBV replication noncytopathically in the liver of transgenic mice by secreting tumor necrosis factor alpha (TNF-alpha) and interferon gamma (IFN-gamma) after antigen recognition. We now demonstrate that hepatocellular HBV replication is also abolished noncytopathically during lymphocytic choriomeningitis virus (LCMV) infection, and we show that this process is mediated by TNF-alpha and IFN-alpha/beta produced by LCMV-infected hepatic macrophages. These results confirm the ability of these inflammatory cytokines to abolish HBV replication; they elucidate the mechanism likely to be responsible for clearance of HBV in chronically infected patients who become superinfected by other hepatotropic viruses; they suggest that pharmacological activation of intrahepatic macrophages may have therapeutic value in chronic HBV infection; and they raise the possibility that conceptually similar events may be operative in other viral infections as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have generated a chimeric gene transfer vector that combines the simplicity of plasmids with the infectivity and long-term expression of retroviruses. We replaced the env gene of a Moloney murine leukemia virus-derived provirus by a foreign gene, generating a plasmid that upon transfer to tumor cells generates noninfectious retroviral particles carrying the transgene. We added to this plasmid an independent expression cassette comprising a cytomegalovirus promoter, an amphotropic retroviral envelope, and a polyadenylylation signal from simian virus 40. These constructs were designed to minimize the risk of recombination generating replication-competent retroviruses. Their only region of homology is a 157-bp sequence with 53% identity. We show that the sole transfection of this plasmid in various cell lines generates infectious but defective retroviral particles capable of efficiently infecting and expressing the transgene. The formation of infectious particles allows the transgene propagation in vitro. Eight days after transfection in vitro, the proportion of cells expressing the transgene is increased by 10-60 times. There was no evidence of replication-competent retrovirus generation in these experiments. The intratumoral injection of this plasmid, but not of the control vector lacking the env gene, led to foci of transgene-expressing cells, suggesting that the transgene had propagated in situ. Altogether, these "plasmoviruses" combine advantages of viral and non-viral vectors. They should be easy to produce in large quantity as clinical grade materials and should allow efficient and safe in situ targeting of tumor cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of chronic hepatitis B virus (HBV) infections with the reverse transcriptase inhibitor lamivudine leads to a rapid decline in plasma viremia and provides estimates for crucial kinetic constants of HBV replication. We find that in persistently infected patients, HBV particles are cleared from the plasma with a half-life of approximately 1.0 day, which implies a 50% daily turnover of the free virus population. Total viral release into the periphery is approximately 10(11) virus particles per day. Although we have no direct measurement of the infected cell mass, we can estimate the turnover rate of these cells in two ways: (i) by comparing the rate of viral production before and after therapy or (ii) from the decline of hepatitis B antigen during treatment. These two independent methods give equivalent results: we find a wide distribution of half-lives for virus-producing cells, ranging from 10 to 100 days in different patients, which may reflect differences in rates of lysis of infected cells by immune responses. Our analysis provides a quantitative understanding of HBV replication dynamics in vivo and has implications for the optimal timing of drug treatment and immunotherapy in chronic HBV infection. This study also represents a comparison for recent findings on the dynamics of human immunodeficiency virus (HIV) infection. The total daily production of plasma virus is, on average, higher in chronic HBV carriers than in HIV-infected patients, but the half-life of virus-producing cells is much shorter in HIV. Most strikingly, there is no indication of drug resistance in HBV-infected patients treated for up to 24 weeks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of a human breast cancer cell line (MDA-MB-435) in nude mice with a recombinant adenovirus containing the human interferon (IFN) consensus gene, IFN-con1 (ad5/IFN), resulted in tumor regression in 100% of the animals. Tumor regression occurred when virus was injected either within 24 hr of tumor cell implantation or with established tumors. However, regression of the tumor was also observed in controls in which either the wild-type virus or a recombinant virus containing the luciferase gene was used, although tumor growth was not completely suppressed. Tumor regression was accompanied by a decrease in p53 expression. Two other tumors, the human myelogenous leukemic cell line K562 and the hamster melanoma tumor RPMI 1846, also responded to treatment but only with ad5/IFN. In the case of K562 tumors, there was complete regression of the tumor, and tumors derived from RPMI 1846 showed partial regression. We propose that the complete regression of the breast cancer with the recombinant virus ad5/IFN was the result of two events: viral oncolysis in which tumor cells are being selectively lysed by the replication-competent virus and the enhanced effect of expression of the IFN-con1 gene. K562 and RPMI 1846 tumors regressed only as a result of IFN gene therapy. This was confirmed by in vitro analysis. Our results indicate that a combination of viral oncolysis with a virus of low pathogenicity, itself resistant to the effects of IFN and IFN gene therapy, might be a fruitful approach to the treatment of a variety of different tumors, in particular breast cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptional repression is an important component of regulatory networks that govern gene expression. In this report, we have characterized the mechanisms by which the immediate early protein 2 (IE2 or IE86), a master transcriptional regulator of human cytomegalovirus, down-regulates its own expression. In vitro transcription and DNA binding experiments demonstrate that IE2 blocks specifically the association of RNA polymerase II with the preinitiation complex. Although, to our knowledge, this is the first report to describe a eukaryotic transcriptional repressor that selectively impedes RNA polymerase II recruitment, we present data that suggest that this type of repression might be widely used in the control of transcription by RNA polymerase II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthetic peptides DP-107 and DP-178 (T-20), derived from separate domains within the human immunodeficiency virus type 1 (HIV-1) transmembrane (TM) protein, gp4l, are stable and potent inhibitors of HIV-1 infection and fusion. Using a computer searching strategy (computerized antiviral searching technology, C.A.S.T.) based on the predicted secondary structure of DP-107 and DP-178 (T-20), we have identified conserved heptad repeat domains analogous to the DP-107 and DP-178 regions of HIV-1 gp41 within the glycoproteins of other fusogenic viruses. Here we report on antiviral peptides derived from three representative paramyxoviruses, respiratory syncytial virus (RSV), human parainfluenza virus type 3 (HPIV-3), and measles virus (MV). We screened crude preparations of synthetic 35-residue peptides, scanning the DP-178-like domains, in antiviral assays. Peptide preparations demonstrating antiviral activity were purified and tested for their ability to block syncytium formation. Representative DP-178-like peptides from each paramyxovirus blocked homologous virus-mediated syncytium formation and exhibited EC50 values in the range 0.015-0.250 microM. Moreover, these peptides were highly selective for the virus of origin. Identification of biologically active peptides derived from domains within paramyxovirus F1 proteins analogous to the DP-178 domain of HIV-1 gp4l is compelling evidence for equivalent structural and functional features between retroviral and paramyxoviral fusion proteins. These antiviral peptides provide a novel approach to the development of targeted therapies for paramyxovirus infections.