178 resultados para two-factor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cartilage matrix protein (CMP) is the prototype of the newly discovered matrilin family, all of which contain von Willebrand factor A domains. Although the function of matrilins remain unclear, we have shown that, in primary chondrocyte cultures, CMP (matrilin-1) forms a filamentous network, which is made up of two types of filaments, a collagen-dependent one and a collagen-independent one. In this study, we demonstrate that the collagen-independent CMP filaments are enriched in pericellular compartments, extending directly from chondrocyte membranes. Their morphology can be distinguished from that of collagen filaments by immunogold electron microscopy, and mimicked by that of self-assembled purified CMP. The assembly of CMP filaments can occur from transfection of a wild-type CMP transgene alone in skin fibroblasts, which do not produce endogenous CMP. Conversely, assembly of endogenous CMP filaments by chondrocytes can be inhibited specifically by dominant negative CMP transgenes. The two A domains within CMP serve essential but different functions during network formation. Deletion of the A2 domain converts the trimeric CMP into a mixture of monomers, dimers, and trimers, whereas deletion of the A1 domain does not affect the trimeric configuration. This suggests that the A2 domain modulates multimerization of CMP. Absence of either A domain from CMP abolishes its ability to form collagen-independent filaments. In particular, Asp22 in A1 and Asp255 in A2 are essential; double point mutation of these residues disrupts CMP network formation. These residues are part of the metal ion–dependent adhesion sites, thus a metal ion–dependent adhesion site–mediated adhesion mechanism may be applicable to matrilin assembly. Taken together, our data suggest that CMP is a bridging molecule that connects matrix components in cartilage to form an integrated matrix network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MyoD and Myf5 belong to the family of basic helix-loop-helix transcription factors that are key operators in skeletal muscle differentiation. MyoD and Myf5 genes are selectively activated during development in a time and region-specific manner and in response to different stimuli. However, molecules that specifically regulate the expression of these two genes and the pathways involved remain to be determined. We have recently shown that the serum response factor (SRF), a transcription factor involved in activation of both mitogenic response and muscle differentiation, is required for MyoD gene expression. We have investigated here whether SRF is also involved in the control of Myf5 gene expression, and the potential role of upstream regulators of SRF activity, the Rho family G-proteins including Rho, Rac, and CDC42, in the regulation of MyoD and Myf5. We show that inactivation of SRF does not alter Myf5 gene expression, whereas it causes a rapid extinction of MyoD gene expression. Furthermore, we show that RhoA, but not Rac or CDC42, is also required for the expression of MyoD. Indeed, blocking the activity of G-proteins using the general inhibitor lovastatin, or more specific antagonists of Rho proteins such as C3-transferase or dominant negative RhoA protein, resulted in a dramatic decrease of MyoD protein levels and promoter activity without any effects on Myf5 expression. We further show that RhoA-dependent transcriptional activation required functional SRF in C2 muscle cells. These data illustrate that MyoD and Myf5 are regulated by different upstream activation pathways in which MyoD expression is specifically modulated by a RhoA/SRF signaling cascade. In addition, our results establish the first link between RhoA protein activity and the expression of a key muscle regulator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sterol regulatory element–binding protein-2 (SREBP-2) is produced as a large precursor molecule attached to the endoplasmic reticulum membrane. In response to the sterol depletion, the N-terminal segment of the precursor, which contains a basic helix-loop-helix–leucine zipper domain, is released by two sequential cleavages and is translocated to the nucleus, where it activates the transcription of target genes. The data herein show that released SREBP-2 uses a distinct nuclear transport pathway, which is mediated by importin β. The mature form of SREBP-2 is actively transported into the nucleus when injected into the cell cytoplasm. SREBP-2 binds directly to importin β in the absence of importin α. Ran-GTP but not Ran-GDP causes the dissociation of the SREBP-2–importin β complex. G19VRan-GTP inhibits the nuclear import of SREBP-2 in living cells. In the permeabilized cell in vitro transport system, nuclear import of SREBP-2 is reconstituted only by importin β in conjunction with Ran and its interacting protein p10/NTF2. We further demonstrate that the helix-loop-helix–leucine zipper motif of SREBP-2 contains a novel type of nuclear localization signal, which binds directly to importin β.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induction of the fibroblast growth factor-2 (FGF-2) gene and the consequent accumulation of FGF-2 in the nucleus are operative events in mitotic activation and hypertrophy of human astrocytes. In the brain, these events are associated with cellular degeneration and may reflect release of the FGF-2 gene from cell contact inhibition. We used cultures of human astrocytes to examine whether expression of FGF-2 is also controlled by soluble growth factors. Treatment of subconfluent astrocytes with interleukin-1β, epidermal or platelet-derived growth factors, 18-kDa FGF-2, or serum or direct stimulation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate or adenylate cyclase with forskolin increased the levels of 18-, 22-, and 24-kDa FGF-2 isoforms and FGF-2 mRNA. Transfection of FGF-2 promoter–luciferase constructs identified a unique −555/−513 bp growth factor-responsive element (GFRE) that confers high basal promoter activity and activation by growth factors to a downstream promoter region. It also identified a separate region (−624/−556 bp) essential for PKC and cAMP stimulation. DNA–protein binding assays indicated that novel cis-acting elements and trans-acting factors mediate activation of the FGF-2 gene. Southwestern analysis identified 40-, 50-, 60-, and 100-kDa GFRE-binding proteins and 165-, 112-, and 90-kDa proteins that interacted with the PKC/cAMP-responsive region. The GFRE and the element essential for PKC and cAMP stimulation overlap with the region that mediates cell contact inhibition of the FGF-2 promoter. The results show a two-stage regulation of the FGF-2 gene: 1) an initial induction by reduced cell contact, and 2) further activation by growth factors or the PKC-signaling pathway. The hierarchic regulation of the FGF-2 gene promoter by cell density and growth factors or PKC reflects a two-stage activation of protein binding to the GFRE and to the PKC/cAMP-responsive region, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin-like growth factor–binding protein-5 (IGFBP-5) has been shown to bind to fibroblast extracellular matrix (ECM). Extracellular matrix binding of IGFBP-5 leads to a decrease in its affinity for insulin-like growth factor-I (IGF-I), which allows IGF-I to better equilibrate with IGF receptors. When the amount of IGFBP-5 that is bound to ECM is increased by exogenous addition, IGF-I’s effect on fibroblast growth is enhanced. In this study we identified the specific basic residues in IGFBP-5 that mediate its binding to porcine smooth-muscle cell (pSMC) ECM. An IGFBP-5 mutant containing alterations of basic residues at positions 211, 214, 217, and 218 had the greatest reduction in ECM binding, although three other mutants, R214A, R207A/K211N, and K202A/R206N/R207A, also had major decreases. In contrast, three other mutants, R201A/K202N/R206N/R208A, and K217N/R218A and K211N, had only minimal reductions in ECM binding. This suggested that residues R207 and R214 were the most important for binding, whereas alterations in K211 and R218, which align near them, had minimal effects. To determine the effect of a reduction in ECM binding on the cellular replication response to IGF-I, pSMCs were transfected with the mutant cDNAs that encoded the forms of IGFBPs with the greatest changes in ECM binding. The ECM content of IGFBP-5 from cultures expressing the K211N, R214A, R217A/R218A, and K202A/R206N/R207A mutants was reduced by 79.6 and 71.7%, respectively, compared with cells expressing the wild-type protein. In contrast, abundance of the R201A/K202N/R206N/R208A mutant was reduced by only 14%. Cells expressing the two mutants with reduced ECM binding had decreased DNA synthesis responses to IGF-I, but the cells expressing the R201A/K202N/R206N/R208A mutant responded well to IGF-I. The findings suggest that specific basic amino acids at positions 207 and 214 mediate the binding of IGFBP-5 to pSMC/ECM. Smooth-muscle cells that constitutively express the mutants that bind weakly to ECM are less responsive to IGF-I, suggesting that ECM binding of IGFBP-5 is an important variable that determines cellular responsiveness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrins and growth factor receptors are important participants in cellular adhesion and migration. The EGF receptor (EGFR) family of tyrosine kinases and the β1-integrin adhesion receptors are of particular interest, given the implication for their involvement in the initiation and progression of tumorigenesis. We used adhesion and chemotaxis assays to further elucidate the relationship between these two families of transmembrane signaling molecules. Specifically, we examined integrin-mediated adhesive and migratory characteristics of the metastatic breast carcinoma cell line MDA-MB-435 in response to stimulation with growth factors that bind to and activate the EGFR or erbB3 in these cells. Although ligand engagement of the EGFR stimulated modest β1-dependent increases in cell adhesion and motility, heregulin-β (HRGβ) binding to the erbB3 receptor initiated rapid and potent induction of breast carcinoma cell adhesion and migration and required dimerization of erbB3 with erbB2. Pharmacologic inhibitors of phosphoinositide 3-OH kinase (PI 3-K) or transient expression of dominant negative forms of PI 3-K inhibited both EGF- and HRGβ-mediated adhesion and potently blocked HRGβ- and EGF-induced cell motility. Our results illustrate the critical role of PI 3-K activity in signaling pathways initiated by the EGFR or erbB3 to up-regulate β1-integrin function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multipotential cytokine transforming growth factor-β (TGF-β) is secreted in a latent form. Latency results from the noncovalent association of TGF-β with its processed propeptide dimer, called the latency-associated peptide (LAP); the complex of the two proteins is termed the small latent complex. Disulfide bonding between LAP and latent TGF-β–binding protein (LTBP) produces the most common form of latent TGF-β, the large latent complex. The extracellular matrix (ECM) modulates the activity of TGF-β. LTBP and the LAP propeptides of TGF-β (isoforms 1 and 3), like many ECM proteins, contain the common integrin-binding sequence RGD. To increase our understanding of latent TGF-β function in the ECM, we determined whether latent TGF-β1 interacts with integrins. A549 cells adhered and spread on plastic coated with LAP, small latent complex, and large latent complex but not on LTBP-coated plastic. Adhesion was blocked by an RGD peptide, and cells were unable to attach to a mutant form of recombinant LAP lacking the RGD sequence. Adhesion was also blocked by mAbs to integrin subunits αv and β1. We purified LAP-binding integrins from extracts of A549 cells using LAP bound to Sepharose. αvβ1 eluted with EDTA. After purification in the presence of Mn2+, a small amount of αvβ5 was also detected. A549 cells migrated equally on fibronectin- and LAP-coated surfaces; migration on LAP was αvβ1 dependent. These results establish αvβ1 as a LAP-β1 receptor. Interactions between latent TGF-β and αvβ1 may localize latent TGF-β to the surface of specific cells and may allow the TGF-β1 gene product to initiate signals by both TGF-β receptor and integrin pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progesterone-induced meiotic maturation of Xenopus oocytes requires the synthesis of new proteins, such as Mos and cyclin B. Synthesis of Mos is thought to be necessary and sufficient for meiotic maturation; however, it has recently been proposed that newly synthesized proteins binding to p34cdc2 could be involved in a signaling pathway that triggers the activation of maturation-promoting factor. We focused our attention on cyclin B proteins because they are synthesized in response to progesterone, they bind to p34cdc2, and their microinjection into resting oocytes induces meiotic maturation. We investigated cyclin B accumulation in response to progesterone in the absence of maturation-promoting factor–induced feedback. We report here that the cdk inhibitor p21cip1, when microinjected into immature Xenopus oocytes, blocks germinal vesicle breakdown induced by progesterone, by maturation-promoting factor transfer, or by injection of okadaic acid. After microinjection of p21cip1, progesterone fails to induce the activation of MAPK or p34cdc2, and Mos does not accumulate. In contrast, the level of cyclin B1 increases normally in a manner dependent on down-regulation of cAMP-dependent protein kinase but independent of cap-ribose methylation of mRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously isolated the SKN7 gene in a screen designed to isolate new components of the G1-S cell cycle transcription machinery in budding yeast. We have now found that Skn7 associates with Mbp1, the DNA-binding component of the G1-S transcription factor DSC1/MBF. SKN7 and MBP1 show several genetic interactions. Skn7 overexpression is lethal and is suppressed by a mutation in MBP1. Similarly, high overexpression of Mbp1 is lethal and can be suppressed by skn7 mutations. SKN7 is also required for MBP1 function in a mutant compromised for G1-specific transcription. Gel-retardation assays indicate that Skn7 is not an integral part of MBF. However, a physical interaction between Skn7 and Mbp1 was detected using two-hybrid assays and GST pulldowns. Thus, Skn7 and Mbp1 seem to form a transcription factor independent of MBF. Genetic data suggest that this new transcription factor could be involved in the bud-emergence process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibroblast growth factor-2 (FGF-2) immobilized on non-tissue culture plastic promotes adhesion and spreading of bovine and human endothelial cells that are inhibited by anti-FGF-2 antibody. Heat-inactivated FGF-2 retains its cell-adhesive activity despite its incapacity to bind to tyrosine-kinase FGF receptors or to cell-surface heparan sulfate proteoglycans. Recombinant glutathione-S-transferase-FGF-2 chimeras and synthetic FGF-2 fragments identify two cell-adhesive domains in FGF-2 corresponding to amino acid sequences 38–61 and 82–101. Both regions are distinct from the FGF-receptor-binding domain of FGF-2 and contain a DGR sequence that is the inverse of the RGD cell-recognition sequence. Calcium deprivation, RGD-containing eptapeptides, soluble vitronectin (VN), but not fibronectin (FN), inhibit cell adhesion to FGF-2. Conversely, soluble FGF-2 prevents cell adhesion to VN but not FN, thus implicating VN receptor in the cell-adhesive activity of FGF-2. Accordingly, monoclonal and polyclonal anti-αvβ3 antibodies prevent cell adhesion to FGF-2. Also, purified human αvβ3 binds to immobilized FGF-2 in a cation-dependent manner, and this interaction is competed by soluble VN but not by soluble FN. Finally, anti-αvβ3 monoclonal and polyclonal antibodies specifically inhibit mitogenesis and urokinase-type plasminogen activator (uPA) up-regulation induced by free FGF-2 in endothelial cells adherent to tissue culture plastic. These data demonstrate that FGF-2 interacts with αvβ3 integrin and that this interaction mediates the capacity of the angiogenic growth factor to induce cell adhesion, mitogenesis, and uPA up-regulation in endothelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apoptosis triggered by death receptors proceeds after defined signal-transduction pathways. Whether signaling at the receptor level is regulated by intracellular messengers is still unknown. We have investigated the role of two messengers, ceramide and nitric oxide (NO), on the apoptotic pathway activated in human monocytic U937 cells by tumor necrosis factor-α (TNF-α) working at its p55 receptor. Two transduction events, the receptor recruitment of the adapter protein, TRADD, and the activation of the initiator caspase, caspase 8, were investigated. When administered alone, neither of the messengers had any effect on these events. In combination with TNF-α, however, ceramide potentiated, whereas NO inhibited, TNF-α-induced TRADD recruitment and caspase 8 activity. The effect of NO, which was cGMP-dependent, was due to inhibition of the TNF-α-induced generation of ceramide. Our results identify a mechanism of regulation of a signal-transduction pathway activated by death receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been proved that, during anaerobic biosynthesis of the corrin macrocycle, the two-carbon fragment excised from the precursor, precorrin-3, is acetaldehyde, which originates from C-20 and its attached methyl group. This apparently contradictory finding is rationalized in terms of the subsequent enzymatic oxidation of acetaldehyde to acetic acid, which was previously regarded as the volatile fragment released by the action of the biosynthetic enzymes of Propionibacterium shermanii. The observation that acetaldehyde (rather than acetic acid) is extruded during anaerobic B12 synthesis is in full accord with the structure of factor IV, a new intermediate on the pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Factor VIIa (VIIa), the serine protease that initiates the coagulation pathways, is catalytically activated upon binding to its cell surface receptor and cofactor tissue factor (TF). This study provides a comprehensive analysis of the functional surface of VIIa by alanine scanning mutagenesis of 112 residues. Residue side chains were defined which contribute to TF binding and factor X hydrolysis. Energetically important binding contacts at the interface with TF were identified in the first epidermal growth factor domain of VIIa (Gln-64, Ile-69, Phe-71, Arg-79) and in the protease domain (Arg-277, Met-306, Asp-309). The observed energetic defects are in good agreement with the corresponding residues in TF, suggesting that the VIIa light chain plays a prominent role in high affinity binding of cofactor. Mutation of protease domain interface residues indicated that TF allosterically influences the active site of VIIa. Stabilization of a labile zymogen to enzyme transition could explain the activating effect of TF on VIIa catalytic function. Residues important for factor X hydrolysis were found in three regions of the protease domain: (i) specificity determinants in the catalytic cleft and adjacent loops, (ii) an exosite near the TF binding site, and (iii) a large electronegative exosite which is in a position analogous to the basic exosite I of thrombin. TF regions involved in factor X activation are positioned on the same face of the TF·VIIa complex as the two exosites identified on the protease domain surface, providing evidence for an extended interaction of TF·VIIa with macromolecular substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hyperpermeability of tumor vessels to macromolecules, compared with normal vessels, is presumably due to vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) released by neoplastic and/or host cells. In addition, VEGF/VPF is a potent angiogenic factor. Removal of this growth factor may reduce the permeability and inhibit tumor angiogenesis. To test these hypotheses, we transplanted a human glioblastoma (U87), a human colon adenocarcinoma (LS174T), and a human melanoma (P-MEL) into two locations in immunodeficient mice: the cranial window and the dorsal skinfold chamber. The mice bearing vascularized tumors were treated with a bolus (0.2 ml) of either a neutralizing antibody (A4.6.1) (492 μg/ml) against VEGF/VPF or PBS (control). We found that tumor vascular permeability to albumin in antibody-treated groups was lower than in the matched controls and that the effect of the antibody was time-dependent and influenced by the mode of injection. Tumor vascular permeability did not respond to i.p. injection of the antibody until 4 days posttreatment. However, the permeability was reduced within 6 h after i.v. injection of the same amount of antibody. In addition to the reduction in vascular permeability, the tumor vessels became smaller in diameter and less tortuous after antibody injections and eventually disappeared from the surface after four consecutive treatments in U87 tumors. These results demonstrate that tumor vascular permeability can be reduced by neutralization of endogenous VEGF/VPF and suggest that angiogenesis and the maintenance of integrity of tumor vessels require the presence of VEGF/VPF in the tissue microenvironment. The latter finding reveals a new mechanism of tumor vessel regression—i.e., blocking the interactions between VEGF/VPF and endothelial cells or inhibiting VEGF/VPF synthesis in solid tumors causes dramatic reduction in vessel diameter, which may block the passage of blood elements and thus lead to vascular regression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interferon γ (IFN-γ) induces rapid tyrosine phosphorylation of the latent cytoplasmic transcription factor, Stat1, which then forms homodimers, translocates to the nucleus and participates in IFN-γ-induced transcription. However, little is known of the interactions between Stat1 and the general transcription machinery during transcriptional activation. We show here that Stat1 can directly interact with the CREB-binding protein (CBP)/p300 family of transcriptional coactivators. Specifically, two interaction regions were identified: the amino-terminal region of Stat1 interacts with the CREB-binding domain of CBP/p300 and the carboxyl-terminal region of Stat1 interacts with the domain of CBP/p300 that binds adenovirus E1A protein. Transfection experiments suggest a role for these interactions in IFN-γ-induced transcription. Because CBP/p300-binding is required for the adenovirus E1A protein to regulate transcription of many genes during viral replication and cellular transformation, it is possible that the anti-viral effect of IFN-γ is based at least in part on direct competition by nuclear Stat1 with E1A for CBP/p300 binding.