155 resultados para tumor protein
Resumo:
Alveolar rhabdomyosarcoma (ARMS) cells often harbor one of two unique chromosomal translocations, either t(2;13)(q35;q14) or t(1;13)(p36;q14). The chimeric proteins expressed from these rearrangements, PAX3-FKHR and PAX7-FKHR, respectively, are potent transcriptional activators. In an effort to exploit these unique cancer-specific molecules to achieve ARMS-specific expression of therapeutic genes, we have studied the expression of a minimal promoter linked to six copies of a PAX3 DNA binding site, prs-9. In transient transfections, expression of the prs-9-regulated reporter genes was ≈250-fold higher than expression of genes lacking the prs-9 sequences in cell lines derived from ARMS, but remained at or below baseline levels in other cells. High expression of these prs-9-regulated genes was also observed in a cancer cell line that lacks t(2;13) but was stably transfected with a plasmid expressing PAX3-FKHR. Transfection of a plasmid containing the diphtheria toxin A chain gene regulated by prs-9 sequences (pA3–6PED) was selectively cytotoxic for PAX3-FKHR-expressing cells. This was shown by inhibition of gene expression from cotransfected plasmids and by direct cytotoxicity after transfected cells were isolated by cell sorting. Gene transfer of pA3–6PED may thus be useful as a cancer-specific treatment strategy for t(2;13)- or t(1;13)-positive ARMS. Furthermore, gene transfer of fusion protein-regulated toxin genes might also be applied to the treatment of other cancers that harbor cancer-specific chromosomal translocations involving transcription factors.
Resumo:
p53 tumor suppressor protein negatively regulates cell growth, mainly through the transactivation of its downstream target genes. As a sequence-specific DNA binding transcription factor, p53 specifically binds to a 20-bp consensus motif 5′-PuPuPuC(A/T) (T/A)GPyPyPyPuPuPuC(A/T)(T/A)GPyPyPy-3′. We have now identified, partially purified, and characterized an additional ≈40-kDa nuclear protein, p53CP (p53 competing protein), that specifically binds to the consensus p53 binding sites found in several p53 downstream target genes, including Waf-1, Gadd45, Mdm2, Bax, and RGC. The minimal sequence requirement for binding is a 14-bp motif, 5′-CTTGCTTGAACAGG-3′ [5′-C(A/T)(T/A)GPyPyPyPuPuPuC(A/T)(T/A)G-3′], which includes the central nucleotides of the typical p53 binding site with one mismatch. p53CP and p53 (complexed with antibody) showed a similar binding specificity to Waf-1 site but differences in Gadd45 and T3SF binding. Like p53, p53CP also binds both double- and single-stranded DNA oligonucleotides. Important to note, cell cycle blockers and DNA damaging reagents, which induce p53 binding activity, were found to inhibit p53CP binding in p53-positive, but not in p53-negative, cells. This finding suggested a p53-dependent coordinate regulation of p53 and p53CP in response to external stimuli. p53CP therefore could be a third member of the p53 family, in addition to p53 and p73, a newly identified p53 homolog. p53CP, if sequestering p53 from its DNA binding sites through competitive binding, may provide a novel mechanism of p53 inactivation. Alternatively, p53CP may have p53-like functions by binding and transactivating p53 downstream target genes. Cloning of the p53CP gene ultimately will resolve this issue.
Resumo:
Laminin-5 (LN5) is a matrix component of epithelial tissue basement membranes and plays an important role in the initiation and maintenance of epithelial cell anchorage to the underlying connective tissue. Here we show that two distinct LN5 function-inhibitory antibodies, both of which bind the globular domain of the α3 subunit, inhibit proliferation of epithelial cells. These same antibodies also induce a decrease in mitogen-activated protein kinase activity. Inhibition of proliferation by the function-perturbing LN5 antibodies is reversed upon removal of the antibodies and can be overcome by providing the antibody-treated cells with exogenous LN5 and rat tail collagen. Because epithelial cells use the integrin receptor α3β1 to interact with both LN5 and rat tail collagen, we next investigated the possibility that integrin α3β1 is involved in mediating the proliferative impact of LN5. Proliferation of human epithelial cells is significantly inhibited by a function-perturbing α3 integrin antibody. In addition, antibody activation of β1 integrin restores the proliferation of epithelial cells treated with LN5 function-perturbing antibodies. These data indicate that a complex comprising LN5 and α3β1 integrin is multifunctional and contributes not only to epithelial cell adhesion but also to the regulation of cell growth via a signaling pathway involving mitogen-activated protein kinase. We discuss our study in light of recent evidence that LN5 expression is up-regulated at the leading tips of tumors, where it may play a role in tumor cell proliferation.
Resumo:
The mechanisms responsible for the induction of matrix-degrading proteases during lung injury are ill defined. Macrophage-derived mediators are believed to play a role in regulating synthesis and turnover of extracellular matrix at sites of inflammation. We find a localized increase in the expression of the rat interstitial collagenase (MMP-13; collagenase-3) gene from fibroblastic cells directly adjacent to macrophages within silicotic rat lung granulomas. Conditioned medium from macrophages isolated from silicotic rat lungs was found to induce rat lung fibroblast interstitial collagenase gene expression. Conditioned medium from primary rat lung macrophages or J774 monocytic cells activated by particulates in vitro also induced interstitial collagenase gene expression. Tumor necrosis factor-α (TNF-α) alone did not induce interstitial collagenase expression in rat lung fibroblasts but did in rat skin fibroblasts, revealing tissue specificity in the regulation of this gene. The activity of the conditioned medium was found to be dependent on the combined effects of TNF-α and 12-lipoxygenase-derived arachidonic acid metabolites. The fibroblast response to this conditioned medium was dependent on de novo protein synthesis and involved the induction of nuclear activator protein-1 activity. These data reveal a novel requirement for macrophage-derived 12-lipoxygenase metabolites in lung fibroblast MMP induction and provide a mechanism for the induction of resident cell MMP gene expression during inflammatory lung processes.
Resumo:
Exposure of A431 squamous and MDA-MB-231 mammary carcinoma cells to ionizing radiation has been associated with short transient increases in epidermal growth factor receptor (EGFR) tyrosine phosphorylation and activation of the mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) pathways. Irradiation (2 Gy) of A431 and MDA-MB-231 cells caused immediate primary activations (0–10 min) of the EGFR and the MAPK and JNK pathways, which were surprisingly followed by later prolonged secondary activations (90–240 min). Primary and secondary activation of the EGFR was abolished by molecular inhibition of EGFR function. The primary and secondary activation of the MAPK pathway was abolished by molecular inhibition of either EGFR or Ras function. In contrast, molecular inhibition of EGFR function abolished the secondary but not the primary activation of the JNK pathway. Inhibition of tumor necrosis factor α receptor function by use of neutralizing monoclonal antibodies blunted primary activation of the JNK pathway. Addition of a neutralizing monoclonal antibody versus transforming growth factor α (TGFα) had no effect on the primary activation of either the EGFR or the MAPK and JNK pathways after irradiation but abolished the secondary activation of EGFR, MAPK, and JNK. Irradiation of cells increased pro-TGFα cleavage 120–180 min after exposure. In agreement with radiation-induced release of a soluble factor, activation of the EGFR and the MAPK and JNK pathways could be induced in nonirradiated cells by the transfer of media from irradiated cells 120 min after irradiation. The ability of the transferred media to cause MAPK and JNK activation was blocked when media were incubated with a neutralizing antibody to TGFα. Thus radiation causes primary and secondary activation of the EGFR and the MAPK and JNK pathways in autocrine-regulated carcinoma cells. Secondary activation of the EGFR and the MAPK and JNK pathways is dependent on radiation-induced cleavage and autocrine action of TGFα. Neutralization of TGFα function by an anti-TGFα antibody or inhibition of MAPK function by MEK1/2 inhibitors (PD98059 and U0126) radiosensitized A431 and MDA-MB-231 cells after irradiation in apoptosis, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and clonogenic assays. These data demonstrate that disruption of the TGFα–EGFR–MAPK signaling module represents a strategy to decrease carcinoma cell growth and survival after irradiation.
Resumo:
Rb protein inhibits both cell cycle progression and apoptosis. Interaction of specific cellular proteins, including E2F1, with Rb C-terminal domains mediates cell cycle regulation. In contrast, the nuclear N5 protein associates with an Rb N-terminal domain with unknown function. The N5 protein contains a region of sequence similarity to the death domain of proteins involved in apoptotic signaling. We demonstrate here that forced N5 expression potently induces apoptosis in several tumor cell lines. Mutation of conserved residues within the death domain homology compromise N5-induced apoptosis, suggesting that it is required for normal function. Endogenous N5 protein is specifically altered in apoptotic cells treated with ionizing radiation. Furthermore, dominant interfering death domain mutants compromise cellular responses to ionizing radiation. Finally, physical association with Rb protein inhibits N5-induced apoptosis. We propose that N5 protein plays a role in the regulation of apoptosis and that Rb directly coordinates cell proliferation and apoptosis by binding specific proteins involved in each process through distinct protein binding domains.
Resumo:
Signal transducers and activators of transcription (STAT)-induced STAT inhibitor-1 [SSI-1; also known as suppressor of cytokine signaling-1 (SOCS-1)] was identified as a negative feedback regulator of Janus kinase-STAT signaling. We previously generated mice lacking the SSI-1 gene (SSI-1 −/−) and showed that thymocytes and splenocytes in SSI-1 −/− mice underwent accelerated apoptosis. In this paper, we show that murine embryonic fibroblasts lacking the SSI-1 gene are more sensitive than their littermate controls to tumor necrosis factor-α (TNF-α)-induced cell death. In addition, L929 cells forced to express SSI-1 (L929/SSI-1), but not SSI-3 or SOCS-5, are resistant to TNF-α-induced cell death. Furthermore L929/SSI-1 cells treated with TNF-α sustain the activation of p38 mitogen-activated protein (MAP) kinase. In contrast, SSI-1 −/− murine embryonic fibroblasts treated with TNF-α show hardly any activation of p38 MAP kinase. These findings suggest that SSI-1 suppresses TNF-α-induced cell death, which is mediated by p38 MAP kinase signaling.
Resumo:
Apoptosis triggered by death receptors proceeds after defined signal-transduction pathways. Whether signaling at the receptor level is regulated by intracellular messengers is still unknown. We have investigated the role of two messengers, ceramide and nitric oxide (NO), on the apoptotic pathway activated in human monocytic U937 cells by tumor necrosis factor-α (TNF-α) working at its p55 receptor. Two transduction events, the receptor recruitment of the adapter protein, TRADD, and the activation of the initiator caspase, caspase 8, were investigated. When administered alone, neither of the messengers had any effect on these events. In combination with TNF-α, however, ceramide potentiated, whereas NO inhibited, TNF-α-induced TRADD recruitment and caspase 8 activity. The effect of NO, which was cGMP-dependent, was due to inhibition of the TNF-α-induced generation of ceramide. Our results identify a mechanism of regulation of a signal-transduction pathway activated by death receptors.
Resumo:
Recognition of self is emerging as a theme for the immune recognition of human cancer. One question is whether the immune system can actively respond to normal tissue autoantigens expressed by cancer cells. A second but related question is whether immune recognition of tissue autoantigens can actually induce tumor rejection. To address these issues, a mouse model was developed to investigate immune responses to a melanocyte differentiation antigen, tyrosinase-related protein 1 (or gp75), which is the product of the brown locus. In mice, immunization with purified syngeneic gp75 or syngeneic cells expressing gp75 failed to elicit antibody or cytotoxic T-cell responses to gp75, even when different immune adjuvants and cytokines were included. However, immunization with altered sources of gp75 antigen, in the form of either syngeneic gp75 expressed in insect cells or human gp75, elicited autoantibodies to gp75. Immunized mice rejected metastatic melanomas and developed patchy depigmentation in their coats. These studies support a model of tolerance maintained to a melanocyte differentiation antigen where tolerance can be broken by presenting sources of altered antigen (e.g., homologous xenogeneic protein or protein expressed in insect cells). Immune responses induced with these sources of altered antigen reacted with various processed forms of native, syngeneic protein and could induce both tumor rejection and autoimmunity.
Resumo:
Infectious diseases and malnutrition represent major burdens afflicting millions of people in developing countries. Both conditions affect individuals in industrialized nations, particularly the aged, the HIV-infected, and people with chronic diseases. While malnutrition is known to induce a state of immunodeficiency, the mechanisms responsible for compromised antimicrobial resistance in malnourished hosts remain obscure. In the present study, mice fed a 2% protein diet and developing protein calorie malnutrition, in contrast to well-nourished controls receiving a 20% protein diet, rapidly succumbed to infection with Mycobacterium tuberculosis. Malnourished mice exhibited a tissue-specific diminution in the expression of interferon γ, tumor necrosis factor α, and the inducible form of nitric oxide synthase in the lungs, but not the liver. The expression of these molecules critical to the production of mycobactericidal nitrogen oxides was depressed in malnourished animals in the lungs specifically at early times (<14 days) after infection. At later times, levels of expression became comparable to those in well-nourished controls, although the bacillary burden in the malnourished animals continued to rise. Nevertheless, urinary and serum nitrate contents, an index of total nitric oxide (NO) production in vivo, were not detectably diminished in malnourished, mycobacteria-infected mice. In contrast to the selective and early reduction of lymphokines and the inducible form of nitric oxide synthase in the lung, a marked diminution of the granulomatous reaction was observed in malnourished mice throughout the entire course of infection in all tissues examined (lungs, liver, and spleen). Remarkably, the progressively fatal course of tuberculosis observed in the malnourished mice could be reversed by restoring a full protein (20%) diet. The results indicate that protein calorie malnutrition selectively compromises several components of the cellular immune response that are important for containing and restricting tuberculous infection, and suggest that malnutrition-induced susceptibility to some infectious diseases can be reversed or ameliorated by nutritional intervention.
Resumo:
Death-associated protein kinase (DAP-kinase) is a Ca+2/calmodulin-regulated serine/threonine kinase with a multidomain structure that participates in apoptosis induced by a variety of signals. To identify regions in this protein that are critical for its proapoptotic activity, we performed a genetic screen on the basis of functional selection of short DAP-kinase-derived fragments that could protect cells from apoptosis by acting in a dominant-negative manner. We expressed a library of randomly fragmented DAP-kinase cDNA in HeLa cells and treated these cells with IFN-γ to induce apoptosis. Functional cDNA fragments were recovered from cells that survived the selection, and those in the sense orientation were examined further in a secondary screen for their ability to protect cells from DAP-kinase-dependent tumor necrosis factor-α-induced apoptosis. We isolated four biologically active peptides that mapped to the ankyrin repeats, the “linker” region, the death domain, and the C-terminal tail of DAP-kinase. Molecular modeling of the complete death domain provided a structural basis for the function of the death-domain-derived fragment by suggesting that the protective fragment constitutes a distinct substructure. The last fragment, spanning the C-terminal serine-rich tail, defined a new regulatory region. Ectopic expression of the tail peptide (17 amino acids) inhibited the function of DAP-kinase, whereas removal of this region from the complete protein caused enhancement of the killing activity, indicating that the C-terminal tail normally plays a negative regulatory role. Altogether, this unbiased screen highlighted functionally important regions in the protein and revealed an additional level of regulation of DAP-kinase apoptotic function that does not affect the catalytic activity.
Resumo:
Identification and characterization of p53 target genes would lead to a better understanding of p53 functions and p53-mediated signaling pathways. Two putative p53 binding sites were identified in the promoter of a gene encoding PTGF-β, a type β transforming growth factor (TGF-β) superfamily member. Gel shift assay showed that p53 bound to both sites. Luciferase-coupled transactivation assay revealed that the gene promoter was activated in a p53 dose- as well as p53 binding site-dependent manner by wild-type p53 but not by several p53 mutants. The p53 binding and transactivation of the PTGF-β promoter was enhanced by etoposide, a p53 activator, and was largely blocked by a dominant negative p53 mutant. Furthermore, expression of endogenous PTGF-β was remarkably induced by etoposide in p53-positive, but not in p53-negative, cell lines. Finally, the conditioned medium collected from PTGF-β-overexpressing cells, but not from the control cells, suppressed tumor cell growth. Growth suppression was not, however, seen in cells that lack functional TGF-β receptors or Smad4, suggesting that PTGF-β acts through the TGF-β signaling pathway. Thus, PTGF-β, a secretory protein, is a p53 target that could mediate p53-induced growth suppression in autocrinal as well as paracrinal fashions. The finding made a vertical connection between p53 and TGF-β signaling pathways in controlling cell growth and implied a potential important role of p53 in inflammation regulation via PTGF-β.
Resumo:
We report successful electro-gene therapy (EGT) by using plasmid DNA for tumor-bearing mice. Subcutaneously inoculated CT26 tumor was subjected to EGT, which consists of intratumoral injection of a naked plasmid encoding a marker gene or a therapeutic gene, followed by in vivo electroporation (EP). When this treatment modality is carried out with the plasmid DNA for the green fluorescent protein gene, followed by in vivo EP with the optimized pulse parameters, numerous intensely bright green fluorescent signals appeared within the tumor. EGT, by using the “A” fragment of the diphtheria toxin gene significantly inhibited the growth of tumors, by about 30%, on the flank of mice. With the herpes simplex virus thymidine kinase gene, followed by systemic injection of ganciclovir, EGT was far more effective in retarding tumor growth, varying between 50% and 90%, compared with the other controls. Based on these results, it appears that EGT can be used successfully for treating murine solid tumors.
Resumo:
H-2Kb-restricted tumor epitope peptides, including tyrosinase-related protein 2 residues 181–188 (TRP-2) and connexin 37 residues 52–59 (MUT1), were applied to permeability barrier-disrupted C57BL/6 (B6) mouse skin from which the stratum corneum of the epidermis had been removed by tape-stripping. This procedure primed tumor-specific cytotoxic T lymphocytes (CTLs) in the lymph nodes and spleen, protected mice against subsequent challenge with corresponding tumor cells, and suppressed the growth of established tumors. Preventive and therapeutic effectiveness was correlated with the frequency of tumor-specific CTL precursors. MHC class II Iab+ cells separated from tape-stripped skin, compared with those from intact skin, exhibited a strong antigen-presenting capacity for CTL, suggesting that CTL expansion after peptide application is primarily mediated by epidermal Langerhans cells. Thus, percutaneous peptide immunization via barrier-disrupted skin provides a simple and noninvasive means of inducing potent anti-tumor immunity which may be exploited for cancer immunotherapy.
Resumo:
The Epstein–Barr virus (EBV) nuclear protein 2 (EBNA2) and herpes simplex virion protein 16 (VP16) acidic domains that mediate transcriptional activation now are found to have affinity for p300, CBP, and PCAF histone acetyltransferases (HATs). Transcriptionally inactive point mutations in these domains lack affinity for p300, CBP, or PCAF. P300 and CBP copurify with the principal HAT activities that bind to EBNA2 or VP16 acidic domains through velocity sedimentation and anion-exchange chromatography. EBNA2 binds to both the N- and C-terminal domains of p300 and coimmune-precipitates from transfected 293T cells with p300. In EBV-infected Akata Burkitt's tumor cells that do not express the EBV encoded oncoproteins EBNA2 or LMP1, p300 expression enhances the ability of EBNA2 to up-regulate LMP1 expression. Through its intrinsic HAT activity, PCAF can further potentiate the p300 effect. In 293 T cells, P300 and CBP (but not PCAF) can also coactivate transcription mediated by the EBNA2 or VP16 acidic domains and HAT-negative mutants of p300 have partial activity. Thus, the EBNA2 and VP16 acidic domains can utilize the intrinsic HAT or scaffolding properties of p300 to activate transcription.