77 resultados para muscle protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smooth muscle cells (SMCs) have been shown to migrate in response to insulin-like growth factor I (IGF-I). However, the mechanism mediating this response has not been determined. The migration rates of porcine and human vascular SMCs were assessed in a monolayer wounding assay. IGF-I and IGF-II induced increases of 141% and 97%, respectively, in the number of cells that migrated in 4 days. The presence of 0.2% fetal bovine serum in the culture medium was necessary for the IGFs to stimulate migration over uncoated plastic surfaces. However, if vitronectin was used as the substratum, IGF-I stimulated migration by 162% even in the absence of serum. To determine the role of integrins in mediating this migration, SMC surface proteins were labeled with 125I and immunoprecipitated with specific anti-integrin antibodies. Integrins containing alpha-V (vitronectin receptor), alpha5 (fibronectin receptor), and alpha3 (collagen/laminin receptor) subunits were the most abundant. IGF-I treatment caused a 73% reduction in alpha5-integrin subunit protein and a 25% increase in alpha-V subunit. More importantly, ligand binding of alpha-V-beta3 was increased by 2.4-fold. We therefore examined whether the function of the alpha-V-beta3 integrin was important for IGF-I-mediated migration. The disintegrin kistrin was shown by affinity crosslinking to specifically bind with high affinity to alpha-V-beta3 and not to alpha5-beta1 or other abundant integrins. The related disintegrin echistatin specifically inhibited 125I-labeled kistrin binding to alpha-V-beta3, while a structurally distinct disintegrin, decorsin, had 1000-fold lower affinity. The addition of increasing concentrations of either kistrin or echistatin inhibited IGF-I-induced migration, whereas decorsin had a minimal effect. The potency of these disintegrins in inhibiting IGF-I-induced migration paralleled their apparent affinity for the alpha-V integrin. Furthermore, an alpha-V-beta3 blocking antibody inhibited SMC migration by 80%. In summary, vitronectin receptor activation is a necessary component of IGF-I-mediated stimulation of smooth muscle migration, and alpha-V-beta3 integrin antagonists appear to be important reagents for modulating this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clotting factor XII (Hageman factor) contains epidermal growth factor (EGF)-homologous domains and is reported to be a potent mitogen for human hepatoma (HepG2) cells. In this study, we tested whether factor XII exhibits growth factor activity on several other EGF-sensitive target cells, including fetal hepatocytes, endothelial cells, alveolar type II cells, and aortic smooth muscle cells. We found that factor XII significantly enhanced [3H]thymidine incorporation in aortic smooth muscle cells (SMCs) and all other cells tested. Tyrphostin, a growth factor receptor/tyrosine kinase antagonist, inhibited both EGF- and factor XII-induced responses. However, differences in the levels of magnitude of DNA synthesis, the observed synergism between EGF and factor XII, and the differential sensitivity to tyrphostin suggest that the EGF receptor and the factor XII receptor may be nonidentical. The factor XII-induced mitogenic response was achieved at concentrations that were 1/10th the physiologic range for the circulating factor and was reduced by popcorn inhibitor, a specific factor XII protease inhibitor. Treatment of aortic SMCs with factor XII, as well as activated factor XII, resulted in a rapid and transient activation of a mitogen-activated/extracellular signal-regulated protein kinase with peak activity/tyrosine phosphorylation observed at 5 to 10 min of exposure. Taken together, these data (i) confirm that clotting factor XII functions as a mitogenic growth factor and (ii) demonstrate that factor XII activates a signal transduction pathway, which includes a mitogen-activated protein kinase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to identify guanine nucleotide-binding proteins (G proteins) involved in the agonist- and guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S])-induced increase in the Ca2+ sensitivity of 20-kDa myosin light chain (MLC20) phosphorylation and contraction in smooth muscle. A constitutively active, recombinant val14p21rhoA.GTP expressed in the baculovirus/Sf9 system, but not the protein expressed without posttranslational modification in Escherichia coli, induced at constant Ca2+ (pCa 6.4) a slow contraction associated with increased MLC20 phosphorylation from 19.8% to 29.5% (P < 0.05) in smooth muscle permeabilized with beta-esein. The effect of val14p21rhoA.GTP was inhibited by ADP-ribosylation of the protein and was absent in smooth muscle extensively permeabilized with Triton X-100. ADP-ribosylation of endogenous p21rho with epidermal cell differentiation inhibitor (EDIN) inhibited Ca2+ sensitization induced by GTP [in rabbit mesenteric artery (RMA) and rabbit ileum smooth muscles], by carbachol (in rabbit ileum), and by endothelin (in RMA), but not by phenylephrine (in RMA), and only slowed the rate without reducing the amplitude of contractions induced in RMA by 1 microM GTP[gamma-S] at constant Ca2+ concentrations. AlF(4-)-induced Ca2+ sensitization was inhibited by both guanosine 5'-[beta-thio]diphosphate (GDP[beta-S]) and by EDIN. EDIN also inhibited, to a lesser extent, contractions induced by Ca2+ alone (pCa 6.4) in both RMA and rabbit ileum. ADP-ribosylation of trimeric G proteins with pertussis toxin did not inhibit Ca2+ sensitization. We conclude that p21rho may play a role in physiological Ca2+ sensitization as a cofactor with other messengers, rather than as a sole direct inhibitor of smooth muscle MLC20 phosphatase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone morphogenetic protein 4 (BMP-4) induces ventral mesoderm but represses dorsal mesoderm formation in Xenopus embryos. We show that BMP-4 inhibits two signaling pathways regulating dorsal mesoderm formation, the induction of dorsal mesoderm (Spemann organizer) and the dorsalization of ventral mesoderm. Ectopic expression of BMP-4 RNA reduces goosecoid and forkhead-1 transcription in whole embryos and in activin-treated animal cap explants. Embryos and animal caps overexpressing BMP-4 transcribe high levels of genes expressed in ventral mesoderm (Xbra, Xwnt-8, Xpo, Mix.1, XMyoD). The Spemann organizer is ventralized in these embryos; abnormally high levels of Xwnt-8 mRNA and low levels of goosecoid mRNA are detected in the organizer. In addition, the organizer loses the ability to dorsalize neighboring ventral marginal zone to muscle. Overexpression of BMP-4 in ventral mesoderm inhibits its response to dorsalization signals. Ventral marginal zone explants ectopically expressing BMP-4 form less muscle when treated with soluble noggin protein or when juxtaposed to a normal Spemann organizer in comparison to control explants. Endogenous BMP-4 transcripts are downregulated in ventral marginal zone explants dorsalized by noggin, in contrast to untreated explants. Thus, while BMP-4 inhibits noggin protein activity, noggin downregulates BMP-4 expression by dorsalizing ventral marginal zone to muscle. Noggin and BMP-4 activities may control the lateral extent of dorsalization within the marginal zone. Competition between these two molecules may determine the final degree of muscle formation in the marginal zone, thus defining the border between dorsolateral and ventral mesoderm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism by which the endogenous vasodilator adenosine causes ATP-sensitive potassium (KATP) channels in arterial smooth muscle to open was investigated by the whole-cell patch-clamp technique. Adenosine induced voltage-independent, potassium-selective currents, which were inhibited by glibenclamide, a blocker of KATP currents. Glibenclamide-sensitive currents were also activated by the selective adenosine A2-receptor agonist 2-p-(2-carboxethyl)-phenethylamino-5'-N- ethylcarboxamidoadenosine hydrochloride (CGS-21680), whereas 2-chloro-N6-cyclopentyladenosine (CCPA), a selective adenosine A1-receptor agonist, failed to induce potassium currents. Glibenclamide-sensitive currents induced by adenosine and CGS-21680 were largely reduced by blockers of the cAMP-dependent protein kinase (Rp-cAMP[S], H-89, protein kinase A inhibitor peptide). Therefore, we conclude that adenosine can activate KATP currents in arterial smooth muscle through the following pathway: (i) Adenosine stimulates A2 receptors, which activates adenylyl cyclase; (ii) the resulting increase intracellular cAMP stimulates protein kinase A, which, probably through a phosphorylation step, opens KATP channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the yeast two-hybrid system we have identified a human protein, GAIP (G Alpha Interacting Protein), that specifically interacts with the heterotrimeric GTP-binding protein G alpha i3. Interaction was verified by specific binding of in vitro-translated G alpha i3 with a GAIP-glutathione S-transferase fusion protein. GAIP is a small protein (217 amino acids, 24 kDa) that contains two potential phosphorylation sites for protein kinase C and seven for casein kinase 2. GAIP shows high homology to two previously identified human proteins, GOS8 and 1R20, two Caenorhabditis elegans proteins, CO5B5.7 and C29H12.3, and the FLBA gene product in Aspergillus nidulans--all of unknown function. Significant homology was also found to the SST2 gene product in Saccharomyces cerevisiae that is known to interact with a yeast G alpha subunit (Gpa1). A highly conserved core domain of 125 amino acids characterizes this family of proteins. Analysis of deletion mutants demonstrated that the core domain is the site of GAIP's interaction with G alpha i3. GAIP is likely to be an early inducible phosphoprotein, as its cDNA contains the TTTTGT sequence characteristic of early response genes in its 3'-untranslated region. By Northern analysis GAIP's 1.6-kb mRNA is most abundant in lung, heart, placenta, and liver and is very low in brain, skeletal muscle, pancreas, and kidney. GAIP appears to interact exclusively with G alpha i3, as it did not interact with G alpha i2 and G alpha q. The fact that GAIP and Sst2 interact with G alpha subunits and share a common domain suggests that other members of the GAIP family also interact with G alpha subunits through the 125-amino-acid core domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study we used the mutant muscle cell line NFB4 to study the balance between proliferation and myogenic differentiation. We show that removal of serum, which induced the parental C2C12 cells to withdraw from the cell cycle and differentiate, had little effect on NFB4 cells. Gene products characteristic of the proliferation state, such as c-Jun, continued to accumulate in the mutant cells in low serum, whereas those involved in differentiation, like myogenin, insulin-like growth factor II (IGF-II), and IGF-binding protein 5 (IGFBP-5) were undetectable. Moreover, NFB4 cells displayed a unique pattern of tyrosine phosphorylated proteins, especially in low serum, suggesting that the signal transduction pathway(s) that controls differentiation is not properly regulated in these cells. Treatment of NFB4 cells with exogenous IGF-I or IGF-II at concentrations shown to promote myogenic differentiation in wild-type cells resulted in activation of myogenin but not MyoD gene expression, secretion of IG-FBP-5, changes in tyrosine phosphorylation, and enhanced myogenic differentiation. Similarly, transfection of myogenin expression constructs also enhanced differentiation and resulted in activation of IGF-II expression, showing that myogenin and IGF-II cross-activate each other's expression. However, in both cases, the expression of Jun mRNA remained elevated, suggesting that IGFs and myogenin cannot overcome all aspects of the block to differentiation in NFB4 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms by which insulin-like growth factors (IGFs) can be both mitogenic and differentiation-promoting in skeletal myoblasts are unclear because these two processes are believed to be mutually exclusive in this tissue. The phosphorylation state of the ubiquitous nuclear retinoblastoma protein (Rb) plays an important role in determining whether myoblasts proliferate or differentiate: Phosphorylated Rb promotes mitogenesis, whereas un- (or hypo-) phosphorylated Rb promotes cell cycle exit and differentiation. We hypothesized that IGFs might affect the fate of myoblasts by regulating the phosphorylation of Rb. Although long-term IGF treatment is known to stimulate differentiation, we find that IGFs act initially to inhibit differentiation and are exclusively mitogenic. These early effects of IGFs are associated with maintenance of Rb phosphorylation typical of proliferating cells; upregulation of the gene expression of cyclin-dependent kinase 4 and cyclin D1, components of a holoenzyme that plays a principal role in mediating Rb phosphorylation; and marked inhibition of the gene expression of myogenin, a member of the MyoD family of skeletal muscle-specific transcription factors that is essential in muscle differentiation. We also find that IGF-induced inhibition of differentiation occurs through a process that is independent of its mitogenic effects. We demonstrate, thus, that IGFs regulate Rb phosphorylation and cyclin D1 and cyclin-dependent kinase 4 gene expression; together with their biphasic effects on myogenin expression, these results suggest a mechanism by which IGFs are initially mitogenic and subsequently differentiation-promoting in skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Drosophila, stripe (sr) gene function is required for normal muscle development. Some mutations disrupt embryonic muscle development and are lethal. Other mutations cause total loss of only a single muscle in the adult. Molecular analysis shows that sr encodes a predicted protein containing a zinc finger motif. This motif is homologous to the DNA binding domains encoded by members of the early growth response (egr) gene family. In mammals, expression of egr genes is induced by intercellular signals, and there is evidence for their role in many developmental events. The identification of sr as an egr gene and its pattern of expression suggest that it functions in muscle development via intercellular communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induction of Drosophila hsp70 protein was detected during aging in flight muscle and leg muscle in the absence of heat shock, using an hsp70-specific monoclonal antibody, and in transgenic flies containing hsp70-beta-galactosidase fusion protein reporter constructs. While hsp70 and reporter proteins were induced during aging, hsp70 message levels were not, indicating that aging-specific induction is primarily posttranscriptional. In contrast, hsp22 and hsp23 were found to be induced during aging at the RNA level and with a broader tissue distribution. The same muscle-specific hsp70 reporter expression pattern was observed in young flies mutant for catalase (H2O2:H2O2 oxidoreductase, EC 1.11.1.6). In catalase (cat) hypomorphic lines where flies survived to older ages, the time course of hsp70 reporter expression during aging was accelerated, and the initial and ultimate levels of expression were increased. The hsp70 reporter was also induced in young flies mutant for copper/zinc superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1). Taken together, the results suggest that aging-specific hsp70 expression may be a result of oxidative damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rat skeletal muscle selenoprotein W cDNA was isolated and sequenced. The isolation strategy involved design of degenerate PCR primers from reverse translation of a partial peptide sequence. A reverse transcription-coupled PCR product from rat muscle mRNA was used to screen a muscle cDNA library prepared from selenium-supplemented rats. The cDNA sequence confirmed the known protein primary sequence, including a selenocysteine residue encoded by TGA, and identified residues needed to complete the protein sequence. RNA folding algorithms predict a stem-loop structure in the 3' untranslated region of the selenoprotein W mRNA that resembles selenocysteine insertion sequence (SE-CIS) elements identified in other selenocysteine coding cDNAs. Dietary regulation of selenoprotein W mRNA was examined in rat muscle. Dietary selenium at 0.1 ppm as selenite increased muscle mRNA 4-fold relative to a selenium-deficient diet. Higher dietary selenium produced no further increase in mRNA levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frequenin was originally identified in Drosophila melanogaster as a Ca(2+)-binding protein facilitating transmitter release at the neuromuscular junction. We have cloned the Xenopus frequenin (Xfreq) by PCR using degenerate primers combined with low-stringency hybridization. The deduced protein has 70% identity with Drosophila frequenin and about 38-58% identity with other Ca(2+)-binding proteins. The most prominent features are the four EF-hands, Ca(2+)-binding motifs. Xfreq mRNA is abundant in the brain and virtually nondetectable from adult muscle. Western blot analysis indicated that Xfreq is highly concentrated in the adult brain and is absent from nonneural tissues such as heart and kidney. During development, the expression of the protein correlated well with the maturation of neuromuscular synapses. To determine the function of Xfreq at the developing neuromuscular junction, the recombinant protein was introduced into Xenopus embryonic spinal neurons by early blastomere injection. Synapses made by spinal neurons containing exogenous Xfreq exhibited a much higher synaptic efficacy. These results provide direct evidence that frequenin enhances transmitter release at the vertebrate neuromuscular synapse and suggest its potential role in synaptic development and plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incubating rat aortic smooth muscle cells with either platelet-derived growth factor BB (PDGF) or insulin-like growth factor I (IGF-I) increased the phosphorylation of PHAS-I, an inhibitor of the mRNA cap binding protein, eukaryotic initiation factor (eIF) 4E. Phosphorylation of PHAS-I promoted dissociation of the PHAS-I-eIF-4E complex, an effect that could partly explain the stimulation of protein synthesis by the two growth factors. Increasing cAMP with forskolin decreased PHAS-I phosphorylation and markedly increased the amount of eIF-4E bound to PHAS-I, effects consistent with an action of cAMP to inhibit protein synthesis. Both PDGF and IGF-I activated p70S6K, but only PDGF increased mitogen-activated protein kinase activity. Forskolin decreased by 50% the effect of PDGF on increasing p70S6K, and forskolin abolished the effect of IGF-I on the kinase. The effects of PDGF and IGF-I on increasing PHAS-I phosphorylation, on dissociating the PHAS-I-eIF-4E complex, and on increasing p70S6K were abolished by rapamycin. The results indicate that IGF-I and PDGF increase PHAS-I phosphorylation in smooth muscle cells by the same rapamycin-sensitive pathway that leads to activation of p70S6K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parvalbumin (PV) is a high affinity Ca(2+)-binding protein found at high concentration in fast-contracting/relaxing skeletal muscle fibers of vertebrates. It has been proposed that PV acts in the process of muscle relaxation by facilitating Ca2+ transport from the myofibrils to the sarcoplasmic reticulum. However, on the basis of metal-binding kinetics of PV in vitro, this hypothesis has been challenged. To investigate the function of PV in skeletal muscle fibers, direct gene transfer was applied in normal and regenerating rat soleus muscles which do not synthesize detectable amounts of PV. Two weeks after in vivo transfection with PV cDNA, considerable levels of PV mRNA and protein were detected in normal muscle, and even higher amounts were detected in regenerating muscle. Twitch half-relaxation time was significantly shortened in a dose-dependent way in transfected muscles, while contraction time remained unaltered. The observed shortening of half-relaxation time is due to PV and its ability to bind Ca2+, because a mutant protein lacking Ca(2+)-binding capacity did not promote any change in physiology. These results directly demonstrate the physiological function of PV as a relaxing factor in mammalian skeletal muscle.