154 resultados para mRNA for neuropeptide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been demonstrated that shortened forms of (stem II-deleted) hammerhead ribozymes with low intrinsic activity form very active dimers with a common stem II (very active short ribozymes capable of forming dimers were designated maxizymes). Intracellular activities of heterodimeric maxizymes and conventional ribozymes, under the control of a human tRNAVal-promoter, were compared against the cleavage of HIV-1 tat mRNA. The pol III-driven maxizymes formed very active heterodimers, and they successfully cleaved HIV-1 tat mRNA in mammalian cells at two sites simultaneously. The cleaved fragments were identified directly by Northern blotting analysis. Despite the initial concerns that a complicated dimerization process and formation of inactive homodimers were involved in addition to the process of association with the target, the overall intracellular activities of tRNAVal-driven maxizymes were significantly higher in mammalian cells than those of two sets of independent, conventional hammerhead ribozymes that were targeted at the same two sites within HIV-1 tat mRNA. Because the tRNAVal-driven maxizymes tested to date have been more effective than tRNAVal-driven “standard” hammerhead ribozymes, the tRNAVal-driven heterodimeric maxizymes appear to have potential utility as gene-inactivating agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Positive-strand RNA virus genomes are substrates for translation, RNA replication, and encapsidation. To identify host factors involved in these functions, we used the ability of brome mosaic virus (BMV) RNA to replicate in yeast. We report herein identification of a mutation in the essential yeast gene DED1 that inhibited BMV RNA replication but not yeast growth. DED1 encodes a DEAD (Asp-Glu-Ala-Asp)-box RNA helicase required for translation initiation of all yeast mRNAs. Inhibition of BMV RNA replication by the mutant DED1 allele (ded1–18) resulted from inhibited expression of viral polymerase-like protein 2a, encoded by BMV RNA2. Inhibition of RNA2 translation was selective, with no effect on general cellular translation or translation of BMV RNA1-encoded replication factor 1a, and was independent of p20, a cellular antagonist of DED1 function in translation. Inhibition of RNA2 translation in ded1–18 yeast required the RNA2 5′ noncoding region (NCR), which also conferred a ded1–18-specific reduction in expression on a reporter gene mRNA. Comparison of the similar RNA1 and RNA2 5′ NCRs identified a 31-nucleotide RNA2-specific region that was required for the ded1–18-specific RNA2 translation block and attenuated RNA2 translation in wild-type yeast. Further comparisons and RNA structure predictions suggest a modular arrangement of replication and translation signals in RNA1 and RNA2 5′ NCRs that appears conserved among bromoviruses. The 5′ attenuator and DED1 dependence of RNA2 suggest that, despite its divided genome, BMV regulates polymerase translation relative to other replication factors, just as many single-component RNA viruses use translational read-through and frameshift mechanisms to down-regulate polymerase. The results show that a DEAD-box helicase can selectively activate translation of a specific mRNA and may provide a paradigm for translational regulation by other members of the ubiquitous DEAD-box RNA helicase family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vg1, a member of the transforming growth factor-β family involved in mesoderm induction, is translated subsequent to the localization of its mRNA to the vegetal pole of Xenopus oocytes. Whereas the localization of Vg1 mRNA is known to be directed by the 3′ untranslated region (UTR), the basis of its translational regulation is unknown. We show here that the 3′ UTR of Vg1 causes translational repression of two different reporter mRNAs in Xenopus oocytes. A 350-nucleotide region of the 3′ UTR, which is distinct from the localization element, is necessary and sufficient for mediating translational repression and specifically binds to a 38-kDa polypeptide. The translational repression activity is found throughout the oocyte and at all stages of oogenesis. These results suggest that factors colocalized with Vg1 mRNA at the vegetal pole relieve translational repression to allow expression of Vg1 protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene therapy for patients with hemoglobin disorders has been hampered by the inability of retrovirus vectors to transfer globin genes and their cis-acting regulatory sequences into hematopoietic stem cells without rearrangement. In addition, the expression from intact globin gene vectors has been variable in red blood cells due to position effects and retrovirus silencing. We hypothesized that by substituting the globin gene promoter for the promoter of another gene expressed in red blood cells, we could generate stable retrovirus vectors that would express globin at sufficient levels to treat hemoglobinopathies. Recently, we have shown that the human ankyrin (Ank) gene promoter directs position-independent, copy number-dependent expression of a linked γ-globin gene in transgenic mice. We inserted the Ank/Aγ-globin gene into retrovirus vectors that could transfer one or two copies of the Ank/Aγ-globin gene to target cells. Both vectors were stable, transferring only intact proviral sequences into primary mouse hematopoietic stem cells. Expression of Ank/Aγ-globin mRNA in mature red blood cells was 3% (single copy) and 8% (double copy) of the level of mouse α-globin mRNA. We conclude that these novel retrovirus vectors may be valuable for treating a variety of red cell disorders by gene replacement therapy including severe β-thalassemia if the level of expression can be further increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In plants, sugar feedback regulation provides a mechanism for control of carbohydrate allocation and utilization among tissues and organs. The sugar repression of α-amylase gene expression in rice provides an ideal model for studying the mechanism of sugar feedback regulation. We have shown previously that sugar repression of α-amylase gene expression in rice suspension cells involves control of both transcription rate and mRNA stability. The α-amylase mRNA is significantly more stable in sucrose-starved cells than in sucrose-provided cells. To elucidate the mechanism of sugar-dependent mRNA turnover, we have examined the effect of αAmy3 3′ untranslated region (UTR) on mRNA stability by functional analyses in transformed rice suspension cells. We found that the entire αAmy3 3′ UTR and two of its subdomains can independently mediate sugar-dependent repression of reporter mRNA accumulation. Analysis of reporter mRNA half-lives demonstrated that the entire αAmy3 3′ UTR and the two subdomains each functioned as a sugar-dependent destabilizing determinant in the turnover of mRNA. Nuclear run-on transcription analysis further confirmed that the αAmy3 3′ UTR and the two subdomains did not affect the transcription rate of promoter. The identification of sequence elements in the α-amylase mRNA that dictate the differential stability has very important implications for the study of sugar-dependent mRNA decay mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To elucidate the role of neuropeptide Y (NPY)-Y1 receptor (Y1-R) in food intake, energy expenditure, and other possible functions, we have generated Y1-R-deficient mice (Y1-R−/−) by gene targeting. Contrary to our hypothesis that the lack of NPY signaling via Y1-R would result in impaired feeding and weight loss, Y1-R−/− mice showed a moderate obesity and mild hyperinsulinemia without hyperphagia. Although there was some variation between males and females, typical characteristics of Y1-R−/− mice include: greater body weight (females more than males), an increase in the weight of white adipose tissue (WAT) (approximately 4-fold in females), an elevated basal level of plasma insulin (approximately 2-fold), impaired insulin secretion in response to glucose administration, and a significant changes in mitochondrial uncoupling protein (UCP) gene expression (up-regulation of UCP1 in brown adipose tissue and down-regulation of UCP2 in WAT). These results suggest either that the Y1-R in the hypothalamus is not a key molecule in the leptin/NPY pathway, which controls feeding behavior, or that its deficiency is compensated by other receptors, such as NPY-Y5 receptor. We believe that the mild obesity found in Y1-R−/− mice (especially females) was caused by the impaired control of insulin secretion and/or low energy expenditure, including the lowered expression of UCP2 in WAT. This model will be useful for studying the mechanism of mild obesity and abnormal insulin metabolism in noninsulin-dependent diabetes mellitus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current paper describes a line of cultured rat hepatoma cells (McA-RH7777 cells) that mimics the behavior of rat liver by producing an excess of mRNA for sterol regulatory element-binding protein 1c (SREBP-1c) as opposed to SREBP-1a. These two transcripts are derived from a single gene by use of alternative promoters that are separated by many kilobases in the genome. The high level of SREBP-1c mRNA is abolished when cholesterol synthesis is blocked by compactin, an inhibitor of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase that inhibits cholesterol synthesis. Levels of SREBP-1c mRNA are restored by mevalonate, the product of the HMG CoA reductase reaction, and by ligands for the nuclear hormone receptor LXR, including 22(R)-hydroxycholesterol and T0901317. These data suggest that transcription of the SREBP-1c gene in hepatocytes requires tonic activation of LXR by an oxysterol intermediate in the cholesterol biosynthetic pathway. Reduction of this intermediate lowers SREBP-1c levels, and this in turn is predicted to lower the rates of fatty acid biosynthesis in liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms through which LH-RH antagonists suppress gonadotroph functions and LH-RH receptor (LH-RH-R) production are incompletely understood. To elucidate these mechanisms, we investigated the effects of Cetrorelix on the mRNA expression of pituitary LH-RH-R and luteinizing hormone (LH) secretion in three experimental systems with different pituitary LH-RH environments. Ovariectomy induced 3.61-fold and 6.34-fold increases in the mRNA expression of pituitary LH-RH-R in rats after 11 and 21 days, respectively. After (5 h) a single injection of 100 μg Cetrorelix, no significant decrease occurred in the mRNA levels of pituitary LH-RH-R in ovariectomized (OVX) rats with high pituitary exposure to LH-RH, but there was a significant 23.2% reduction in cycling rats with normal hypophysial LH-RH environment. Prolonged treatment for 10 days with a Cetrorelix depot formulation releasing 100 μg/day decreased the concentration of mRNA for pituitary LH-RH-R by 72.6% in OVX rats, but only by 32.9% in normal rats. The decline in serum LH was 98.7% in OVX rats and 63.2% in normal rats, resulting in a minimal 0.1–0.2 ng/ml LH concentration in both groups. A continuous exposure of pituitary cells to 100 nM Cetrorelix in the superfusion system, which is devoid of LH-RH, did not cause any significant changes in LH-RH-R mRNA level. These studies demonstrate that prolonged exposure to Cetrorelix in vivo, but not in vitro, down-regulates the mRNA expression of the pituitary receptors for LH-RH. Our findings indicate that LH-RH antagonists exert their inhibitory effects on the gene expression of pituitary LH-RH-R by counteracting the stimulatory effect of endogenous LH-RH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genome expression of positive-stranded RNA viruses starts with translation rather than transcription. For some viruses, the genome is the only viral mRNA and expression is regulated primarily at the translational level and by limited proteolysis of polyproteins. Other virus groups also generate subgenomic mRNAs later in the reproductive cycle. For nidoviruses, subgenomic mRNA synthesis (transcription) is discontinuous and yields a 5′ and 3′ coterminal nested set of mRNAs. Nidovirus transcription is not essential for genome replication, which relies on the autoprocessing products of two replicase polyproteins that are translated from the genome. We now show that the N-terminal replicase subunit, nonstructural protein 1 (nsp1), of the nidovirus equine arteritis virus is in fact dispensable for replication but crucial for transcription, thereby coupling replicase expression and subgenomic mRNA synthesis in an unprecedented manner. Nsp1 is composed of two papain-like protease domains and a predicted N-terminal zinc finger, which was implicated in transcription by site-directed mutagenesis. The structural integrity of nsp1 is essential, suggesting that the protease domains form a platform for the zinc finger to operate in transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor necrosis factor α (TNFα) acts as a beneficial mediator in the process of host defence. In recent years major interest has focused on the AU-rich elements (AREs) present in the 3′-untranslated region (3′-UTR) of TNFα mRNA as this region plays a pivotal role in post-transcriptional control of TNFα production. Certain stimuli, such as lipopolysaccharides, a component of the Gram-negative bacterial cell wall, have the ability to relinquish the translational suppression of TNFα mRNA imposed by these AREs in macrophages, thereby enabling the efficient production of the TNFα. In this study we show that the polymorphism (GAU trinucleotide insertional mutation) present in the regulatory 3′-UTR of TNFα mRNA of NZW mice results in the hindered binding of RNA-binding proteins, thereby leading to a significantly reduced production of TNFα protein. We also show that the binding of macrophage proteins to the main ARE is also decreased by another trinucleotide (CAU) insertion in the TNFα 3′-UTR. One of the proteins affected by the GAU trinucleotide insertional mutation was identified as HuR, a nucleo-cytoplasmic shuttling protein previously shown to play a prominent role in the stability and translatability of mRNA containing AREs. Since binding of this protein most likely modulates the stability, translational efficiency and transport of TNFα mRNA, these results suggest that mutations in the ARE of TNFα mRNA decrease the production of TNFα protein in macrophages by hindering the binding of HuR to the ARE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen induces a global change in the translation profile of Xenopus hepatocytes, replacing serum protein synthesis with production of the yolk protein precursor vitellogenin. This is accomplished by the coordinate destabilization of serum protein mRNAs and the transcriptional induction and subsequent stabilization of vitellogenin mRNA. Previous work identified an endonuclease activity whose appearance on polysomes correlated with the disappearance of serum protein mRNAs. This enzyme, polysomal ribonuclease 1 (PMR1), is a novel member of the peroxidase gene family. The current study examined the association of PMR1 with its mRNA targets on polysomes and mRNPs. The highest amount of polysome-bound PMR1 was observed prior to estrogen induction of mRNA decay. Its distribution on sucrose density gradients matched the absorbance profile of polysome-bound mRNA, suggesting that PMR1 forms a latent complex with mRNA. Following dissociation with EDTA the 62 kDa PMR1 sedimented with a larger complex of >670 kDa. Estrogen induces a 22-fold increase in unit enzymatic activity of polysome-bound PMR1, and a time-dependent loss of PMR1 from polysomes in a manner that mirrors the disappearance of albumin mRNA. These data suggest that the key step in the extensive estrogen-induced change in mRNA decay in Xenopus liver is activation of a latent mRNA endonuclease associated with its target mRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective transcript profiling in animal systems requires isolation of homogenous tissue or cells followed by faithful mRNA amplification. Linear amplification based on cDNA synthesis and in vitro transcription is reported to maintain representation of mRNA levels, however, quantitative data demonstrating this as well as a description of inherent limitations is lacking. We show that published protocols produce a template-independent product in addition to amplifying real target mRNA thus reducing the specific activity of the final product. We describe a modified amplification protocol that minimizes the generation of template-independent product and can therefore generate the desired microgram quantities of message-derived material from 100 ng of total RNA. Application of a second, nested round of cDNA synthesis and in vitro transcription reduces the required starting material to 2 ng of total RNA. Quantitative analysis of these products on Caenorhabditis elegans Affymetrix GeneChips shows that this amplification does not reduce overall sensitivity and has only minor effects on fidelity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PromEC is an updated compilation of Escherichia coli mRNA promoter sequences. It includes documentation on the location of experimentally identified mRNA transcriptional start sites on the E.coli chromosome, as well as the actual sequences in the promoter region. The database was updated as of July 2000 and includes 472 entries. PromEC is accessible at http://bioinfo.md.huji.ac.il/marg/promec

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adenylate uridylate-rich elements (AREs) mediate the rapid turnover of mRNAs encoding proteins that regulate cellular growth and body response to exogenous agents such as microbes, inflammatory and environmental stimuli. However, the full repertoire of ARE-containing mRNAs is unknown. Here, we explore the distribution of AREs in human mRNA sequences. Computational derivation of a 13-bp ARE pattern was performed using multiple expectation maximization for motif elicitations (MEME) and consensus analyses. This pattern was statistically validated for the specificity towards the 3′-untranslated region and not coding region. The computationally derived ARE pattern is the basis of a database which contains non-redundant full-length ARE-mRNAs. The ARE-mRNA database (ARED; http://rc.kfshrc.edu.sa/ared) reveals that ARE-mRNAs encode a wide repertoire of functionally diverse proteins that belong to different biological processes and are important in several disease states. Cluster analysis was performed using the ARE sequences to demonstrate potential relationships between the type and number of ARE motifs, and the functional characteristics of the proteins.